首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) causes both Ca2+ release and Ca2+ influx in bovine adrenal chromaffin cells. To elucidate the mechanisms of PACAP-induced Ca2+ release, we investigated expression of PACAP receptors and measured inositol trisphosphates (IP3), cyclic AMP, and the intracellular Ca2+ concentration in bovine adrenal medullary cells maintained in primary culture. RT-PCR analysis revealed that bovine adrenal medullary cells express the PACAP receptor hop, which is known to couple with both IP3 and cyclic AMP pathways. The two naturally occurring forms of PACAP, PACAP38 and PACAP27, both increased cyclic AMP and IP3, and PACAP38 was more potent than PACAP27 in both effects. Despite the effects of PACAP on IP3 production, the Ca2+ release induced by PACAP38 or by PACAP27 was unaffected by cinnarizine, a blocker of IP3 channels. The potencies of the peptides to cause Ca2+ release in the presence of cinnarizine were similar. The Ca2+ release induced by PACAP38 or by PACAP27 was strongly inhibited by ryanodine and caffeine. In the presence of ryanodine and caffeine, PACAP38 was more potent than PACAP27. PACAP-induced Ca2+ release was unaffected by Rp-adenosine 3′,5′-cyclic monophosphothioate, an inhibitor of protein kinase A. Ca2+ release induced by bradykinin and angiotensin II was also inhibited by ryanodine and caffeine, but unaffected by cinnarizine. Although IP3 production stimulated by PACAP38 or bradykinin was abolished by the phospholipase C inhibitor, U-73122, Ca2+ release in response to the peptides was unaffected by U-73122. These results suggest that PACAP induces Ca2+ release from ryanodine/caffeine stores through a novel intracellular mechanism independent of both IP3 and cyclic AMP and that the mechanism may be the common pathway through which peptides release Ca2+ in adrenal chromaffin cells.  相似文献   

2.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

3.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

4.
Capacitative Ca(2+) entry is essential for refilling intracellular Ca(2+) stores and is thought to be regulated primarily by inositol 1, 4,5-trisphosphate (IP(3))-sensitive stores in nonexcitable cells. In nonexcitable A549 cells, the application of caffeine or ryanodine induces Ca(2+) release in the absence of extracellular Ca(2+) similar to that induced by thapsigargin (Tg), and Ca(2+) entry occurs upon the readdition of extracellular Ca(2+). The channels thus activated are also permeable to Mn(2+). The channels responsible for this effect appear to be activated by the depletion of caffeine/ryanodine-sensitive stores per se, as evidenced by the activation even in the absence of increased intracellular Ca(2+) concentration. Tg pretreatment abrogates the response to caffeine/ryanodine, whereas Tg application subsequent to caffeine/ryanodine treatment induces further Ca(2+) release. The response to caffeine/ryanodine is also abolished by initial ATP application, whereas ATP added subsequent to caffeine/ryanodine induces additional Ca(2+) release. RT-PCR analyses showed the expression of a type 1 ryanodine receptor, two human homologues of transient receptor potential protein (hTrp1 and hTrp6), as well as all three types of the IP(3) receptor. These results suggest that in A549 cells, (i) capacitative Ca(2+) entry can also be regulated by caffeine/ryanodine-sensitive stores, and (ii) the RyR-gated stores interact functionally with those sensitive to IP(3), probably via Ca(2+)-induced Ca(2+) release.  相似文献   

5.
Recent studies propose the existence of two distinct Ca2+ compartments in human platelets based on the expression of different SERCA isoforms with distinct sensitivity to thapsigargin and 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ). Using fura-2-loaded human platelets we have found that depletion of the TBHQ sensitive store reduces thrombin--but not ADP--or vasopressin (AVP)-induced Ca2+ release. Redistribution of cytosolic Ca2+ after thrombin stimulation resulted in overloading of the TBHQ-sensitive store. This phenomenon was not observed with ADP or AVP. We found that NAADP decreases the Ca2+ concentration into the stores in permeabilized platelets, which is prevented by depletion of the TBHQ-sensitive store. Nimodipine, an inhibitor of the NAADP receptor, reduced thrombin-induced Ca2+ release from the TBHQ-sensitive stores, without having any effect on the responses elicited by ADP or AVP. Finally, the phospholipase C inhibitor, U-73122, abolished ADP- and AVP-induced Ca2+ release, suggesting that their responses are entirely dependent on IP3 generation. In contrast, treatment with both U-73122 and nimodipine was required to abolish thrombin-induced Ca2+ release. We suggest that thrombin evokes Ca2+ release from TBHQ-sensitive and insensitive stores, which requires both NAADP and IP3, respectively, while ADP and AVP exert an IP3-dependent release of Ca2+ from the TBHQ-insensitive compartment in human platelets.  相似文献   

6.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   

7.
Previous studies have shown that human fetal adrenal gland from 17- to 20-week-old fetuses expressed pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, which were localized on chromaffin cells. The aim of the present study was to identify PACAP receptor isoforms and to determine whether PACAP can affect intracellular calcium concentration ([Ca(2+)](i)) and catecholamine secretion. Using primary cultures and specific stimulation of chromaffin cells, we demonstrate that PACAP-38 induced an increase in [Ca(2+)](i) that was blocked by PACAP (6-38), was independent of external Ca(2+), and originated from thapsigargin-insensitive internal stores. The PACAP-triggered Ca(2+) increase was not affected by inhibition of PLC beta (preincubation with U-73122) or by pretreatment of cells with Xestospongin C, indicating that the inositol 1,4,5-triphosphate-sensitive stores were not mobilized. However, forskolin (FSK), which raises cytosolic cAMP, induced an increase in Ca(2+) similar to that recorded with PACAP-38. Blockage of PKA by H-89 or (R(p))-cAMPS suppressed both PACAP-38 and FSK calcium responses. The effect of PACAP-38 was also abolished by emptying the caffeine/ryanodine-sensitive Ca(2+) stores. Furthermore, treatment of cells with orthovanadate (100 microm) impaired Ca(2+) reloading of PACAP-sensitive stores indicating that PACAP-38 can mobilize Ca(2+) from secretory vesicles. Moreover, PACAP induced catecholamine secretion by chromaffin cells. It is concluded that PACAP-38, through the PAC(1) receptor, acts as a neurotransmitter in human fetal chromaffin cells inducing catecholamine secretion, through nonclassical, recently described, ryanodine/caffeine-sensitive pools, involving a cAMP- and PKA-dependent phosphorylation mechanism.  相似文献   

8.
A transient rise in intracellular Ca2+ during fertilization is necessary for activation of the quiescent sea urchin egg. Several mechanisms contribute to the rise in Ca2+ including influx across the egg plasma membrane and release from intracellular stores. The egg contains both IP3-sensitive and -insensitive Ca2+ release mechanisms and in this study we have used single-cell spectrofluorimetry to examine the effects of caffeine and ryanodine on Ca2+ release in eggs preloaded with fura 2. Caffeine induced a small Ca2+ release that was insensitive to heparin or ruthenium red. Ca2+ liberation by caffeine could be augmented by prior treatment with thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase. Variable Ca2+ releases were observed in response to microinjection of ryanodine. The action of ryanodine appeared to be enhanced by prior injection of heparin and partially inhibited by ruthenium red. The release of Ca2+ by caffeine or ryanodine was generally insufficient to trigger cortical granule exocytosis, thus these eggs could be fertilized and a second Ca2+ release during fertilization was measured. Unlike the caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release mechanism in somatic cells, the graded responses in eggs suggested this caffeine- and ryanodine-sensitive release mechanism is not sensitive to sudden changes in Ca2+. Thus we could examine the combined actions of caffeine and ryanodine on Ca2+ release, which were synergistic. Caffeine treatment of ryanodine-injected eggs or ryanodine injection of caffeine-treated eggs stimulated a Ca2+ release significantly larger than the release by either drug independently. The experiments presented here suggest that sea urchin eggs liberate Ca2+ in response to caffeine and ryanodine; however, the regulation of this release differs from that described for caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release of somatic cells.  相似文献   

9.
Modulation of Ca(2+) stores with 10 mM caffeine stimulates robust secretion of gonadotropin (GTH-II) from goldfish gonadotropes. Although both endogenous forms of gonadotropin-releasing hormone (GnRH) utilize a common intracellular Ca(2+) store, sGnRH, but not cGnRH-II, uses an additional caffeine-sensitive mechanism. We examined caffeine signaling by using Ca(2+) imaging, electrophysiology, and cell-column perifusion. Although caffeine inhibited K+ channels, this action appeared to be unrelated to caffeine-induced GTH-II release, because the latter was insensitive to tetraethylammonium. The effects of caffeine also were not mediated by the cAMP/protein kinase A pathway. Instead, caffeine-evoked GTH-II responses were Ca(2+) signal dependent because they were abolished by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid loading. Caffeine generated localized Ca(2+) signals that began near secretory granules. Surprisingly, caffeine-stimulated GTH-II release was insensitive to 100 microM ryanodine and, unlike GnRH action, was unaffected by inhibitors of voltage-gated Ca(2+) channels or sarco(endo)plasmic reticulum Ca(2+)-ATPases. Collectively, these data indicate that caffeine-stimulated GTH-II release is not mediated by typical agonist-sensitive Ca(2+) stores found in endoplasmic reticulum.  相似文献   

10.
Ca+ sparks originating from ryanodine receptors (RyRs) are known to cause membrane hyperpolarization and vasorelaxation in systemic arterial myocytes. By contrast, we have found that Ca2+ sparks of pulmonary arterial smooth muscle cells (PASMCs) are associated with membrane depolarization and activated by endothelin-1 (ET-1), a potent vasoconstrictor that mediates/modulates acute and chronic hypoxic pulmonary vasoconstriction. In this study, we characterized the effects of ET-1 on the physical properties of Ca2+ sparks and probed the signal transduction mechanism for spark activation in rat intralobar PASMCs. Application of ET-1 at 0.1-10 nM caused concentration-dependent increases in frequency, duration, and amplitude of Ca2+ sparks. The ET-1-induced increase in spark frequency was inhibited by BQ-123, an ETA-receptor antagonist; by U-73122, a PLC inhibitor; and by xestospongin C and 2-aminoethyl diphenylborate, antagonists of inositol trisphosphate (IP3) receptors (IP3Rs). However, it was unrelated to sarcoplasmic reticulum Ca2+ content, activation of L-type Ca2+ channels, PKC, or cADP ribose. Photorelease of caged-IP3 indicated that Ca2+ release from IP3R could cross-activate RyRs to generate Ca2+ sparks. Immunocytochemistry showed that the distributions of IP3Rs and RyRs were similar in PASMCs. Moreover, inhibition of Ca2+ sparks with ryanodine caused a significant rightward shift in the ET-1 concentration-tension relationship in pulmonary arteries. These results suggest that ET-1 activation of Ca2+ sparks is mediated via the ETA receptor-PLC-IP3 pathway and local Ca2+ cross-signaling between IP3Rs and RyRs; in addition, this novel signaling mechanism contributes significantly to the ET-1-induced vasoconstriction in pulmonary arteries.  相似文献   

11.
The mechanisms of H2O2-induced Ca2+ release from intracellular stores were investigated in human umbilical vein endothelial cells. It was found that U73122, the selective inhibitor of phospholipase C, could not inhibit the H2O2-induced cytosolic Ca2+ mobilization. No elevation of inositol 1,4,5-trisphosphate (IP3) was detected in cells exposed to H2O2. By loading mag-Fura-2, a Ca2+ indicator, into intracellular store, the H2O2-induced Ca2+ release from intracellular calcium store was directly observed in the permeabilized cells in a dose-dependent manner. This release can be completely blocked by heparin, a well-known antagonist of IP3 receptor, indicating a direct activation of IP3 receptor on endoplasmic reticulum (ER) membrane by H2O2. It was also found that H2O2 could still induce a relatively small Ca2+ release from internal stores after the Ca2+-ATPase on ER membrane and the Ca2+ uptake to mitochondria were simultaneously inhibited by thapsigargin and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. The later observation suggests that a thapsigargin-insensitive non-mitochondrial intracellular Ca2+ store might be also involved in H2O2-induced Ca2+ mobilization.  相似文献   

12.
Ca2+ release from the envelope of isolated pancreatic acinar nuclei could be activated by nicotinic acid adenine dinucleotide phosphate (NAADP) as well as by inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose (cADPR). Each of these agents reduced the Ca2+ concentration inside the nuclear envelope, and this was associated with a transient rise in the nucleoplasmic Ca2+ concentration. NAADP released Ca2+ from the same thapsigargin-sensitive pool as IP3. The NAADP action was specific because, for example, nicotineamide adenine dinucleotide phosphate was ineffective. The Ca2+ release was unaffected by procedures interfering with acidic organelles (bafilomycin, brefeldin, and nigericin). Ryanodine blocked the Ca2+-releasing effects of NAADP, cADPR, and caffeine, but not IP3. Ruthenium red also blocked the NAADP-elicited Ca2+ release. IP3 receptor blockade did not inhibit the Ca2+ release elicited by NAADP or cADPR. The nuclear envelope contains ryanodine and IP3 receptors that can be activated separately and independently; the ryanodine receptors by either NAADP or cADPR, and the IP3 receptors by IP3.  相似文献   

13.
The effects of electrical stimulation, muscarinic and serotonergic agonists, and caffeine on [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) content, intracellular free Ca2+ concentration ([Ca2+]i), and release of [3H]norepinephrine ([3H]NE) were studied in cultured sympathetic neurons. Neuronal cell body [Ca2+]i was unaffected by muscarinic or serotonergic receptor stimulation, which significantly increased [3H]Ins(1,4,5)P3 content. Stimulation at 2 Hz and caffeine had no effect on [3H]Ins(1,4,5)P3, but caused greater than two-fold increase in [Ca2+]i. Only 2-Hz stimulation released [3H]NE. Caffeine had no effect on the release. When [Ca2+]i was measured in growth cones, only electrical stimulation produced an increase in [Ca2+]i. The other agents had no effect on Ca2+ at the terminal regions of the neurons. We conclude that Ins(1,4,5)P3-insensitive, but caffeine-sensitive Ca2+ stores in sympathetic neurons are located only in the cell body and are not coupled to [3H]NE release.  相似文献   

14.
The prostaglandin-evoked cAMP production was studied in human neuroblastoma SK-N-BE(2)C cells during neuronal differentiation induced by all-trans retinoic acid. The incubation with 5 microM all-trans retinoic acid for 4-6 days promoted neurite outgrowth of cells. After differentiation, prostaglandin E(2) (PGE(2))-induced cAMP production was dramatically increased, whereas forskolin- and AlF-induced cAMP productions were not changed. The increase reached maximum after 4-days of incubation with all-trans retinoic acid. The differentiation caused an increase in the maximal response and a decrease in the half-maximal effective concentration of the PGE(2)-induced cAMP production. In addition, the binding of [(3)H]PGE(2) to membrane receptors was enhanced in differentiated cells. However, the order of potency of the various prostaglandins (PGE(1) = PGE(2) > PGD(2) = PGF(2alpha) = PGI(2)) in cAMP production did not change during the differentiation, suggesting that mainly E-prostanoid (EP) receptors were involved. Butaprost, an EP(2) receptor specific agonist, increased the cAMP level in a concentration dependent manner and had a similar potentiating effect on cAMP production as PGE(2) upon differentiation. Northern blot analysis using the human cDNA probes shows that the EP(2) mRNA level was about seven times higher in differentiated cells, while the dopamine beta-hydroxylase (DBH) mRNA completely disappeared. Our results, thus, suggest that elevated gene expression of the prostanoid EP(2) receptor results in an increase in the PGE(2)-evoked cAMP production in SK-N-BE(2)C cells during neuronal differentiation.  相似文献   

15.
We have demonstrated that prostaglandin E2 (PGE2) treatment of bovine adrenal chromaffin cells results in a sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) in these cells. Because the continued elevation of [Ca2+]i was dependent on extracellular Ca2+ concentration, it can be assumed that the PGE2-induced [Ca2+]i increase is due, at least in part, to an opening of membrane Ca2+ channels. In this study, we used electrophysiological methods to examine the mechanism of the PGE2-induced [Ca2+]i increase directly. Puff application of PGE2 to the external medium resulted in a prolonged depolarization in about half of the chromaffin cells examined. In whole-cell voltage-clamp recordings, an increase in inward current was observed over a 6-7 min period following bath application of PGE2 (greater than or equal to 10 microM), even in the absence of external Na+. This inward current was abolished when the recordings were made with the cells in a Ca2(+)-free medium, but it was not inhibited by Mn2+, a blocker of voltage-dependent Ca2+ channels. In cell-attached patch-clamp configuration, PGE2 produced an increase in the opening frequency of inward currents. The reversal potential of the PGE2-induced currents was about +40 mV, which is close to the reversal potential of the Ca2+ channel. The opening frequency was not affected by membrane potential changes. In inside-out patch-clamp configuration, inositol 1,4,5-trisphosphate (2 microM) added to the cytoplasmic side activated the Ca2(+)-channel currents, but PGE2 was ineffective when applied to the cytoplasmic side. These results suggest that PGE2 activates voltage-independent Ca2+ channels in chromaffin cells through a diffusible second messenger, possibly inositol 1,4,5-trisphosphate.  相似文献   

16.
Accumulating evidence has indicated that mast cells can modulate a wide variety of immune responses. Migration and adhesion play a critical role in regulation of tissue mast cell function, in particular, under inflammatory conditions. We previously demonstrated that prostaglandin (PG) E(2) stimulates adhesion of a mouse mastocytoma cell line, P-815, to the Arg-Gly-Asp (RGD)-enriched matrix through cooperation between two PGE(2) receptor subtypes: EP3 and EP4 (Hatae N, Kita A, Tanaka S, Sugimoto Y, Ichikawa A. J Biol Chem 278: 17977-17981, 2003). We here investigated PGE(2)-induced adhesion of IL-3-dependent bone marrow-derived cultured mast cells (BMMCs). In contrast to the elevated cAMP-dependent adhesion of P-815 cells, EP3-mediated Ca(2+) mobilization plays a pivotal role in PGE(2)-induced adhesion of BMMCs. Adhesion and Ca(2+) mobilization induced by PGE(2) were abolished in the Ptger3(-/-) BMMCs and were significantly suppressed by treatment with pertussis toxin, a phospholipase C inhibitor, U-73122, and a store-operated Ca(2+) channel inhibitor, SKF 36965, indicating the involvement of G(i)-mediated Ca(2+) influx. We then investigated PGE(2)-induced adhesion of peritoneal mast cells to the RGD-enriched matrix. EP3 subtype was found to be the dominant PGE receptor that expresses in mouse peritoneal mast cells. PGE(2) induced adhesion of the peritoneal mast cells of the Ptger3(+/+) mice, but not that of the Ptger3(-/-) mice. In rat peritoneal mast cells, PGE(2) or an EP3 agonist stimulated both Ca(2+) mobilization and adhesion to the RGD-enriched matrix. These results suggested that the EP3 subtype plays a pivotal role in PGE(2)-induced adhesion of murine mast cells to the RGD-enriched matrix through Ca(2+) mobilization.  相似文献   

17.
We recently reported that prostaglandin E2 (PGE2) stimulates phosphoinositide metabolism accompanied by an increase in intracellular free Ca2+ concentration ([Ca2+]i) in cultured bovine adrenal chromaffin cells. In the present study, temporal and spatial changes in [Ca2+]i induced by PGE2 in fura-2-loaded individual cells were investigated by digital image microscopy and were compared with those induced by nicotine and histamine. Image analysis of single cells revealed that responses to PGE2 showed asynchrony with the onset of [Ca2+]i changes. After a lag time of 10-30 s, PGE2-induced [Ca2+]i changes took a similar prolonged time course in almost all cells: a rapid rise followed by a slower decline to the basal level over 5 min. Few cells exhibited oscillations in [Ca2+]i. In contrast, nicotine and histamine induced rapid and transient [Ca2+]i changes, and these [Ca2+]i changes were characteristic of each stimulant. Whereas pretreatment of the cells with pertussis toxin (100 ng/ml, 6 h) did not block the response to any of these stimulants, treatment with 12-O-tetradecanoylphorbol 13-acetate (100 nM, 10 min) completely abolished [Ca2+]i changes elicited by PGE2 and histamine. In a Ca2(+)-free medium containing 3 mM EGTA, or in medium to which La3+ was added, the [Ca2+]i response to nicotine disappeared, but that to histamine was not affected significantly. Under the same conditions, the percentage of the cells that responded to PGE2 was reduced to 37% and the prolonged [Ca2+]i changes induced by PGE2 became transient in responding cells, suggesting that the maintained [Ca2+]i increase seen in normal medium is the result of a PGE2-stimulated entry of extracellular Ca2+. Whereas the organic Ca2(+)-channel blocker nicardipine inhibited [Ca2+]i changes by all stimulants at 10 microM, these [Ca2+]i changes were not affected by any of the organic Ca2(+)-channel blockers, i.e., verapamil, diltiazem, nifedipine, and nicardipine, at 1 microM, a concentration high enough to inhibit voltage-sensitive Ca2+ channels. These results demonstrate that PGE2 may promote Ca2+ entry with concomitant release of Ca2+ from intracellular stores and that the mechanism(s) triggered by PGE2 is apparently different from that by histamine or nicotine.  相似文献   

18.
Exposure of pheochromocytoma (PC 12) cells to a time-varying 1.51 T magnetic field inhibited an increase in the intracellular Ca2+ concentration ([Ca2+]i) induced by addition of caffeine to Ca(2+)-free medium. This inhibition occurred after a 15-min exposure and was maintained for at least 2 h. [Ca2+]i sharply increased in cells loaded with cyclic ADP-ribose, and 2-h exposure significantly suppressed the increase. Addition of ATP induced a transient increase in intracellular Ca2+ release mediated by IP3 receptor, and this increase was strongly inhibited by the exposure. Results indicated that the magnetic field exposure strongly inhibited Ca2+ release mediated by both IP3 and ryanodine receptors in PC 12 cells. However, thapsigargin-induced Ca2+ influx (capacitative Ca2+ entry) across the cell membrane was unaffected. The ATP content was maintained at the normal level during the 2-h exposure, suggesting that ATP hydrolysis was unchanged. Therefore, Mg2+ which is known to be released by ATP hydrolysis and inhibit intracellular Ca2+ release may not relate the exposure-caused inhibition. Eddy currents induced in culture medium appear to change cell membrane properties and indirectly inhibit Ca2+ release from endoplasmic reticulum and other Ca2+ stores in PC 12 cells.  相似文献   

19.
Slow waves determine frequency and propagation characteristics of contractions in the small intestine, yet little is known about mechanisms of slow wave regulation. We propose a role for intracellular Ca(2+), inositol 1,4,5,-trisphosphate (IP(3))-sensitive Ca(2+) release, and sarcoplasmic reticulum (SR) Ca(2+) content in the regulation of slow wave frequency because 1) 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, a cytosolic Ca(2+) chelator, reduced the frequency or abolished the slow waves; 2) thapsigargin and cyclopiazonic acid (CPA), inhibitors of SR Ca(2+)-ATPase, decreased slow wave frequency; 3) xestospongin C, a reversible, membrane-permeable blocker of IP(3)-induced Ca(2+) release, abolished slow wave activity; 4) caffeine and phospholipase C inhibitors (U-73122, neomycin, and 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate) inhibited slow wave frequency; 5) in the presence of CPA or thapsigargin, stimulation of IP(3) synthesis with carbachol, norepinephrine, or phenylephrine acting on alpha(1)-adrenoceptors initially increased slow wave frequency but thereafter increased the rate of frequency decline, 6) thimerosal, a sensitizing agent of IP(3) receptors increased slow wave frequency, and 7) ryanodine, a selective modulator of Ca(2+)-induced Ca(2+) release, had no effect on slow wave frequency. In summary, these data are consistent with a role of IP(3)-sensitive Ca(2+) release and the rate of SR Ca(2+) refilling in regulation of intestinal slow wave frequency.  相似文献   

20.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号