首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Retroviral integrase functions as a multimer and can turn over catalytically.   总被引:19,自引:0,他引:19  
A number of studies have demonstrated that the retroviral protein integrase (IN) alone is sufficient to carry out two discrete steps required for retroviral integration: the endonucleolytic processing of viral DNA ends and the cleavage and joining of host DNA to the processed viral DNA termini. Little is known about the biochemical and biophysical mechanisms involved in these reactions. Here, we employ in vitro assays of Rous sarcoma virus IN to demonstrate for the first time that IN is capable of multiple turnover in both the processing and joining reactions. The turnover number calculated for the processing reaction is 0.26 cleavages/min/mol of IN. Our steady state kinetic studies indicate that both the processing and joining activities require a multimeric form of IN. Ultracentrifugation analyses reveal a substrate-independent reversible equilibrium among the monomeric, dimeric, and tetrameric forms of this protein. From these results we conclude that the minimal functional unit for both the processing and joining of each viral DNA end is an IN dimer.  相似文献   

5.
6.
Retroviral integrase catalyzes integration of double-stranded viral DNA into the host chromosome by a process that has become an attractive target for drug design. In the 3' processing reaction, two nucleotides are specifically cleaved from both 3' ends of viral DNA yielding a 5' phosphorylated dimer (pGT). The resulting recessed 3' hydroxy groups of adenosine provide the attachment sites to the host DNA in the strand transfer reaction. Here, we studied the effect of modified double-stranded oligonucleotides mimicking both the unprocessed (21-mer oligonucleotides) and 3' processed (19-mer oligonucleotides) U5 termini of proviral DNA on activities of HIV-1 integrase in vitro. The inhibitions of 3' processing and strand transfer reactions were studied using 21-mer oligonucleotides containing isopolar, nonisosteric, both conformationally flexible and restricted phosphonate internucleotide linkages between the conservative AG of the sequence CAGT, and using a 21-mer oligonucleotide containing 2'-fluoroarabinofuranosyladenine. All modified 21-mer oligonucleotides competitively inhibited both reactions mediated by HIV-1 integrase with nanomolar IC50 values. Our studies with 19-mer oligonucleotides showed that modifications of the 3' hydroxyl significantly reduced the strand transfer reaction. The inhibition of integrase with 19-mer oligonucleotides terminated by (S)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine, 9-(2-phosphonomethoxyethyl)adenine, and adenosine showed that proper orientation of the 3' OH group and the presence of the furanose ring of adenosine significantly influence the strand transfer reaction.  相似文献   

7.
8.
The integrase-catalyzed insertion of the retroviral genome into the host chromosome involves two reactions in vivo: 1) the binding and endonucleolytic removal of the terminal dinucleotides of the viral DNA termini and 2) the recombination of the ends with the host DNA. Kukolj and Skalka (Kukolj, G., and Skalka, A. M. (1995) Genes Dev. 9, 2556-2567) have previously shown that tethering of the termini enhances the endonucleolytic activities of integrase. We have used 5'-5' phosphoramidites to design reverse-polarity tethers that allowed us to examine the reactivity of two viral long terminal repeat-derived sequences when concurrently bound to integrase and, additionally, developed presteady-state assays to analyze the initial exponential phase of the reaction, which is a measure of the amount of productive nucleoprotein complexes formed during preincubation of integrase and DNA. Furthermore, the reverse-polarity tether circumvents the integrase-catalyzed splicing reaction (Bao, K., Skalka, A. M., and Wong, I. (2002) J. Biol. Chem. 277, 12089-12098) that obscures accurate analysis of the reactivities of synapsed DNA substrates. Consequently, we were able to establish a lower limit of 0.2 s(-1) for the rate constant of the processing reaction. The analysis showed the physiologically relevant U3/U5 pair of viral ends to be the preferred substrate for integrase with the U3/U3 combination favored over the U5/U5 pair.  相似文献   

9.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

10.
Chen H  Engelman A 《Journal of virology》2000,74(17):8188-8193
Two activities of retroviral integrase, 3' processing and DNA strand transfer, are required to integrate viral cDNA into a host cell chromosome. Integrase activity has been analyzed in vitro using purified protein and recombinant DNA substrates that model the U3 and U5 ends of viral cDNA or by using viral preintegration complexes (PICs) that form during virus infection. Numerous studies have investigated changes in integrase or viral DNA for effects on both 3' processing and DNA strand transfer activities using purified protein, but similar analyses have not been carried out using PICs. Here, we analyzed PICs from human immunodeficiency virus type 1 (HIV-1) strain 604del, an integration-defective mutant lacking 26 bp of U5, and revE1, a revertant of 604del containing an additional 19-bp deletion, for levels of 3' processing activity that occurred in infected cells and for levels of in vitro DNA strand transfer activity. Whereas revE1 supported one-third to one-half of the level of wild-type DNA strand transfer activity, the level of 604del DNA strand transfer activity was undetectable. Surprisingly, integrase similarly processed the 3' ends of 604del and revE1 in vivo. We therefore conclude that 604del is blocked in its ability to replicate in cells after the 3' processing step of retroviral integration. Whereas Western blotting showed that wild-type, revE1, and 604del PICs contained similar levels of integrase protein, Mu-mediated PCR footprinting revealed only minimal protein-DNA complex formation at the ends of 604del cDNA. We propose that 604del is replication defective because proteins important for DNA strand transfer activity do not stably associate with this cDNA after in vivo 3' processing by integrase.  相似文献   

11.
Retroviral replication depends on successful integration of the viral genetic material into a host cell chromosome. Virally encoded integrase, an enzyme from the DDE(D) nucleotidyltransferase superfamily, is responsible for the key DNA cutting and joining steps associated with this process. Insights into the structural and mechanistic aspects of integration are directly relevant for the development of antiretroviral drugs. Recent breakthroughs have led to biochemical and structural characterization of the principal integration intermediates revealing the tetramer of integrase that catalyzes insertion of both 3' viral DNA ends into a sharply bent target DNA. This review discusses the mechanism of retroviral DNA integration and the mode of action of HIV-1 integrase strand transfer inhibitors in light of the recent visualization of the prototype foamy virus intasome, target DNA capture and strand transfer complexes.  相似文献   

12.
Retroviral integrase (IN) is responsible for two consecutive reactions, which lead to insertion of a viral DNA copy into a host cell chromosome. Initially, the enzyme removes di- or trinucleotides from viral DNA ends to expose 3'-hydroxyls attached to the invariant CA dinucleotides (3'-processing reaction). Second, it inserts the processed 3'-viral DNA ends into host chromosomal DNA (strand transfer). Herein, we report a crystal structure of prototype foamy virus IN bound to viral DNA prior to 3'-processing. Furthermore, taking advantage of its dependence on divalent metal ion cofactors, we were able to freeze trap the viral enzyme in its ground states containing all the components necessary for 3'-processing or strand transfer. Our results shed light on the mechanics of retroviral DNA integration and explain why HIV IN strand transfer inhibitors are ineffective against the 3'-processing step of integration. The ground state structures moreover highlight a striking substrate mimicry utilized by the inhibitors in their binding to the IN active site and suggest ways to improve upon this clinically relevant class of small molecules.  相似文献   

13.
Retroviral integration requires cis-acting sequences at the termini of linear double-stranded viral DNA and a product of the retroviral pol gene, the integrase protein (IN). IN is required and sufficient for generation of recessed 3' termini of the viral DNA (the first step in proviral integration) and for integration of the recessed DNA species in vitro. Human immunodeficiency virus type 1 (HIV-1) IN, expressed in Escherichia coli, was purified to near homogeneity. The substrate sequence requirements for specific cleavage and integration of retroviral DNA were studied in a physical assay, using purified IN and short duplex oligonucleotides that correspond to the termini of HIV DNA. A few point mutations around the IN cleavage site substantially reduced cleavage; most other mutations did not have a drastic effect, suggesting that the sequence requirements are limited. The terminal 15 bp of the retroviral DNA were demonstrated to be sufficient for recognition by IN. Efficient specific cutting of the retroviral DNA by IN required that the cleavage site, the phosphodiester bond at the 3' side of a conserved CA-3' dinucleotide, be located two nucleotides away from the end of the viral DNA; however, low-efficiency cutting was observed when the cleavage site was located one, three, four, or five nucleotides away from the terminus of the double-stranded viral DNA. Increased cleavage by IN was detected when the nucleotides 3' of the CA-3' dinucleotide were present as single-stranded DNA. IN was found to have a strong preference for promoting integration into double-stranded rather than single-stranded DNA.  相似文献   

14.
15.
The retroviral integrase (IN) carries out the integration of the viral DNA into the host genome. Both IN and the DNA sequences at the viral long-terminal repeat (LTR) are required for the integration function. In this report, a series of minor groove binding hairpin polyamides targeting sequences within terminal inverted repeats of the Moloney murine leukemia virus (M-MuLV) LTR were synthesized, and their effects on integration were analyzed. Using cell-free in vitro integration assays, polyamides targeting the conserved CA dinucleotide with cognate sites closest to the terminal base pairs were effective at blocking 3' processing but not strand transfer. Polyamides which efficiently inhibited 3' processing and strand transfer targeted the LTR sequences through position 9. Polyamides that inhibited integration were effective at nanomolar concentrations and showed subnanomolar affinity for their cognate LTR sites. These studies highlight the role of minor groove interactions within the LTR termini for retroviral integration.  相似文献   

16.
In vitro activities of purified visna virus integrase.   总被引:7,自引:5,他引:2       下载免费PDF全文
Although integration generally is considered a critical step in the retrovirus life cycle, it has been reported that visna virus, which causes degenerative neurologic disease in sheep, can productively infect sheep choroid plexus cells without detectable integration. To ascertain whether the integrase (IN) of visna virus is an inherently defective enzyme and to create tools for further study of integration of the phylogenetically related human immunodeficiency virus type 1 (HIV-1), we purified visna virus IN by using a bacterial expression system and applied various in vitro oligonucleotide-based assays to studying this protein. We found that visna virus IN demonstrates the full repertoire of in vitro functions characteristic of retroviral integrases. In particular, visna virus IN exhibits site-specific endonuclease activity following the invariant CA found two nucleotides from the 3' ends of viral DNA (processing activity), joins processed oligonucleotides to various sites on other oligonucleotides (strand transfer or integration activity), and reverses the integration reaction by resolving a complex that mimics one end of viral DNA integrated into host DNA (disintegration activity). In addition, although it has been reported that purified HIV-1 IN cannot specifically nick visna virus DNA ends, purified visna virus IN does specifically process and integrate HIV-1 DNA ends.  相似文献   

17.
Concerted integration of retroviral DNA termini, which produces a characteristic duplication of sequences at the integration site and formation of the proviral state, is a necessary step of the retroviral life cycle. We investigated the pairwise integration reaction catalyzed by purified avian retrovirus integrase by measuring the response to solution parameters and how the sequences of the viral termini, which comprise the avian imperfect inverted repeat, affect the reaction. When we optimized the reaction, an efficiency was achieved which approached that measured in systems using cytoplasmic extracts from virus-infected cells. The response of purified avian integrase to solution parameters was similar to that of the integration activity derived from cellular extracts. For strand transfer, the U3 viral terminal sequences were preferred to those of the U5 termini, a result we previously showed for the trimming reaction. That the sequence preference was the same for trimming and strand transfer may be further evidence that only one catalytic site is used for both reactions. A significant number of integration sites were sequenced. Interesting trends were found for the fidelity of the host duplications to the avian 6-bp duplication size, the clustering of the integration sites in the nonessential region of the lambda host DNA, and the sequence characteristics of the duplication sites.  相似文献   

18.
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the genome of a human cell is an essential step in the viral replication cycle. Understanding of the integration process has been facilitated by the development of in vitro assays using specific oligonucleotides and recombinant integrase. However, understanding of the biology of retroviral integration will require in vitro and in vivo model systems using long DNA substrates that mimic the HIV cDNA. We have now studied the activity of recombinant HIV-1 integrase on a linear 4.7 kb double-stranded DNA, containing flanking regions of approximately 200 bp that represent the intact ends of the HIV-1 long terminal repeat (LTR) sequences (mini-HIV). The strand transfer products of the integration reaction can be directly visualized after separation in agarose gels by ethidium bromide staining. The most prominent reaction product resulted from integration of one LTR end into another LTR end (U5 into U5 and U5 into U3). Sequence analysis of the reaction products showed them to be products of legitimate integration preceded by correct processing of the viral LTR ends. Hotspots for integration were detected. Electron microscopy revealed the presence of a range of reaction products resulting from single or multiple integration events. The binding of HIV-1 integrase to mini-HIV DNA was visualized. Oligomers of integrase seem to induce DNA looping whereby the enzyme often appears to be bound to the DNA substrate that adopts the structure of a three-site synapsis that is reminiscent of the Mu phage transposase complex.  相似文献   

19.
Integrase is the only viral protein necessary for integration of retroviral DNA into chromosomal DNA of the host cell. Biochemical analysis of human immunodeficiency virus type 1 (HIV-1) integrase with purified protein and synthetic DNA substrates has revealed extensive information regarding the mechanism of action of the enzyme, as well as identification of critical residues and functional domains. Since in vitro reactions are carried out in the absence of other viral proteins and they analyze strand transfer of only one end of the donor substrate, they do not define completely the process of integration as it occurs during the course of viral infection. In an effort to further understand the role of integrase during viral infection, we initially constructed a panel of 24 HIV-1 mutants with specific alanine substitutions throughout the integrase coding region and analyzed them in a human T-cell line infection. Of these mutant viruses, 12 were capable of sustained viral replication, 11 were replication defective, and 1 was temperature sensitive for viral growth. The replication defective viruses express and correctly process the integrase and Gag proteins. Using this panel of mutants and an additional set of 18 mutant viruses, we identified nine amino acids which, when replaced with alanine, destroy integrase activity. Although none of the replication-defective mutants are able to integrate into the host genome, a subset of them with alterations in the catalytic triad are capable of Tat-mediated transactivation of an indicator gene linked to the viral long terminal repeat promoter. We present evidence that integration of the HIV-1 provirus is essential not only for productive infection of T cells but also for virus passage in both cultured peripheral blood lymphocytes and macrophage cells.  相似文献   

20.
Using purified integration protein (IN) from human immunodeficiency virus (HIV) type 1 and oligonucleotide mimics of viral and target DNA, we have investigated the DNA sequence specificity of the cleaving and joining reactions that take place during retroviral integration. The first reaction in this process is selective endonucleolytic cleaving of the viral DNA terminus that generates a recessed 3' OH group. This 3' OH group is then joined to a 5' phosphoryl group located at a break in the target DNA. We found that the conserved CA located close to the 3' end of the plus strand of the U5 viral terminus (also present on the minus strand of the U3 terminus) was required for both cleaving and joining reactions. Six bases of HIV U5 or U3 DNA at the ends of model substrates were sufficient for nearly maximal levels of selective endonucleolytic cleaving and joining. However, viral sequence elements upstream of the terminal 6 bases could also affect the efficiencies of the cleaving and joining reactions. The penultimate base (C) on the minus strand of HIV U5 was required for optimal joining activity. A synthetic oligonucleotide mimic of the putative in vivo viral "DNA" substrate for HIV IN, a molecule that contained a terminal adenosine 5'-phosphate (rA) on the minus strand, was indistinguishable in the cleaving and joining reactions from the DNA substrate containing deoxyadenosine instead of adenosine 5'-phosphate at the terminal position. Single-stranded DNA served as an in vitro integration target for HIV IN. The DNA sequence specificity of the joining reaction catalyzed in the reverse direction was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号