首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Basu  H E Varmus 《Journal of virology》1990,64(11):5617-5625
The integration protein (IN) of Moloney murine leukemia virus (MuLV), purified after being produced in yeast cells, has been analyzed for its ability to bind its putative viral substrates, the att sites. An electrophoretic mobility shift assay revealed that the Moloney MuLV IN protein binds synthetic oligonucleotides containing att sequences, with specificity towards its cognate (MuLV) sequences. The terminal 13 base pairs, which are identical at both ends of viral DNA, are sufficient for binding if present at the ends of oligonucleotide duplexes in the same orientation as in linear viral DNA. However, only weak binding was observed when the same sequences were positioned within a substrate in a manner simulating att junctions in circular viral DNA with two long terminal repeats. Binding to att sites in oligonucleotides simulating linear viral DNA was dependent on the presence of the highly conserved CA residues preceding the site for 3' processing (an IN-dependent reaction that removes two nucleotides from the 3' ends of linear viral DNA); mutation of CA to TG abolished binding, and a CA to TA change reduced affinity by at least 20-fold. Removal of either the terminal two base pairs from both ends of the oligonucleotide duplex or the terminal two nucleotides from the 3' ends of each strand did not affect binding. The removal of three 3' terminal nucleotides, however, abolished binding, suggesting an essential role for the A residue immediately upstream of the 3' processing site in the binding reaction. These results help define the sequence requirements for att site recognition by IN, explain the conservation of the subterminal CA dinucleotide, and provide a simple assay for sequence-specific IN activity.  相似文献   

2.
The integration of the human immunodeficiency virus type 1 DNA into the host cell genome is catalysed by the viral integrase (IN). The reaction consists of a 3'-processing [dinucleotide released from each 3' end of the viral long terminal repeat (LTR)] followed by a strand transfer (insertion of the viral genome into the human chromosome). A 17 base pair oligonucleotide d(GGAAAATCTCTAGCAGT), d(ACTGCTAGAGATTTTCC) reproducing the U5-LTR extremity of viral DNA that contains the IN attachment site was analysed by NMR using the classical NOEs and scalar coupling constants in conjunction with a small set of residual dipolar coupling constants (RDCs) measured at the 13C/15N natural abundance. The combination of these two types of parameters in calculations significantly improved the DNA structure determination. The well-known features of A-tracts were clearly identified by RDCs in the first part of the molecule. The binding/cleavage site at the viral DNA end is distinguishable by a loss of regular base stacking and a distorted minor groove that can aid its specific recognition by IN.  相似文献   

3.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

4.
5.
The disintegration activity of Moloney murine leukemia virus (M-MuLV) integrase (IN) was investigated through structural and sequence modifications of a Y substrate that resembles an integration intermediate. The Y substrates, constructed from individual oligonucleotides, contain a single viral long terminal repeat (LTR) joined to a nicked target DNA. Truncation of the double-stranded LTR sequences distal to the conserved 5'-CA-3' dinucleotide progressively diminished disintegration activity. M-MuLV IN was also able to catalyze disintegration of a heterologous double-stranded LTR sequence. Significantly, the activity of M-MuLV IN on single-stranded LTR Y substrates was more dependent on the sequence and length of the LTR strand than that reported for human immunodeficiency virus type 1 (HIV-1) IN. Modifications introduced at the Y-substrate junction demonstrated that the 3'-hydroxyl group at the terminus of the target strand was necessary for efficient joining of the target DNA strands. The presence of a 2'-hydroxyl group at the 3' end of the target strand, as well as a single-nucleotide gap at the LTR-target junction, reduced disintegration activity. The absence of hydroxyl groups on the terminal nucleotide abolished joining of the target strands. The results presented here suggest that M-MuLV IN disintegration activity is dependent on substantially different LTR sequence requirements than those reported for HIV-1 IN and may be mediated primarily through a structural recognition event.  相似文献   

6.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   

7.
The integrase (IN) protein of the human immunodeficiency virus mediates integration of the viral DNA into the cellular genome. In vitro, this reaction can be mimicked by using purified recombinant IN and model DNA substrates. IN mediates two reactions: an endonucleolytic cleavage at each 3' end of the proviral DNA (terminal cleavage) and the joining of the linear viral DNA to 5' phosphates in the target DNA (strand transfer). Previous investigators have shown that purified IN requires Mn2+ or Mg2+ to promote strand transfer in vitro, although Mg2+ is the likely metal cofactor in vivo. IN activity in the presence of Mg2+ in vitro requires high IN concentrations and low concentrations of salt. Here, we show that the viral nucleocapsid protein NCp7 allows efficient IN-mediated strand transfer in the presence of Mg2+ at low enzyme concentrations. This potentiating effect appears to be unique to NCp7, as other small DNA-binding proteins, while capable of stimulating integration in the presence of Mn2+, all failed to stimulate strand transfer in the presence of Mg2+.  相似文献   

8.
9.
The avian myeloblastosis virus integration protein (IN) was capable of removing a specific set of 3'-OH-terminal nucleotides from blunt-ended long terminal repeat (LTR) substrates which resembled linear viral DNA in vivo. The 3'-OH-recessed ends map to the in vivo site of integration on linear viral DNA. The linear DNA plasmid substrate was formed by the generation of a unique DraI restriction enzyme site (TTT/AAA) at the circle junction of a 330-bp tandem LTR-LTR insert. IN preferentially released the three T nucleotides from the minus strand of the U3 LTR substrate compared with its ability to remove the three T nucleotides from the plus strand of the U5 LTR substrate. It was also observed that IN was capable of cleaving a non-LTR DNA substrate containing sequence homology to the U5 LTR terminus.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) inserts the viral DNA genome into host chromosomes. Here, by native agarose gel electrophoresis, using recombinant IN with a blunt-ended viral DNA substrate, we identified the synaptic complex (SC), a transient early intermediate in the integration pathway. The SC consists of two donor ends juxtaposed by IN noncovalently. The DNA ends within the SC were minimally processed (~15%). In a time-dependent manner, the SC associated with target DNA and progressed to the strand transfer complex (STC), the nucleoprotein product of concerted integration. In the STC, the two viral DNA ends are covalently attached to target and remain associated with IN. The diketo acid inhibitors and their analogs effectively inhibit HIV-1 replication by preventing integration in vivo. Strand transfer inhibitors L-870,810, L-870,812, and L-841,411, at low nM concentrations, effectively inhibited the concerted integration of viral DNA donor in vitro. The inhibitors, in a concentration-dependent manner, bound to IN within the SC and thereby blocked the docking onto target DNA, which thus prevented the formation of the STC. Although 3'-OH recessed donor efficiently formed the STC, reactions proceeding with this substrate exhibited marked resistance to the presence of inhibitor, requiring significantly higher concentrations for effective inhibition of all strand transfer products. These results suggest that binding of inhibitor to the SC occurs prior to, during, or immediately after 3'-OH processing. It follows that the IN-viral DNA complex is "trapped" by the strand transfer inhibitors via a transient intermediate within the cytoplasmic preintegration complex.  相似文献   

11.
The long terminal repeats (LTRs) that flank the retroviral DNA genome play a distinct role in the integration process by acting as specific substrates for the integrase (IN). The role of LTR sequences in providing substrate recognition and specificity to integration reactions was investigated for INs from human immunodeficiency virus type 1 (HIV-1), Moloney murine leukemia virus (M-MuLV), human T-cell leukemia virus type 1 (HTLV-1), and human T-cell leukemia virus type 2 (HTLV-2). Overall, these INs required specific LTR sequences for optimal catalysis of 3'-processing reactions, as opposed to strand transfer and disintegration reactions. It is of particular note that in strand transfer reactions the sites of integration were similar among the four INs. In the 3'-processing reaction, sequence specificity for each IN was traced to the three nucleotides proximal to the conserved CA. Reactions catalyzed by M-MuLV IN were additionally influenced by upstream regions. The nucleotide requirements for optimal catalysis differed for each IN. HIV-1 IN showed a broad range of substrate specificities, while HTLV-1 IN and HTLV-2 IN had more defined sequence requirements. M-MuLV IN exhibited greater activity with the heterologous LTR substrates than with its own wild-type substrate. This finding was further substantiated by the high levels of activity catalyzed by the IN on modified M-MuLV LTRs. This work suggests that unlike the other INs examined, M-MuLV IN has evolved with an IN-LTR interaction that is suboptimal.  相似文献   

12.
13.
14.
Retroviral integrase (IN) catalyzes the integration of double-stranded viral DNA into the host cell genome. The reaction can be divided in two steps: 3'-end processing and DNA strand transfer. Here we studied the effect of short oligonucleotides (ODNs) on human immunodeficiency virus type 1 (HIV-1) IN. ODNs were either specific, with sequences representing the extreme termini of the viral long terminal repeats, or nonspecific. All ODNs were found to competitively inhibit the processing reaction with Ki values in the nM range for the best inhibitors. Our studies on the interaction of IN with ODNs also showed that: (i) besides the 3'-terminal GT, the interaction of IN with the remaining nucleotides of the 21-mer specific sequence was also important for an effective interaction of the enzyme with the substrate; (ii) in the presence of specific ODNs the activity of the enzyme was enhanced, a result which suggests an ODN-induced conformational change of HIV-1 IN.  相似文献   

15.
Pandey KK  Bera S  Grandgenett DP 《Biochemistry》2011,50(45):9788-9796
The assembly mechanism for the human immunodeficiency virus type 1 (HIV) synaptic complex (SC) capable of concerted integration is unknown. Molecular and structural studies have established that the HIV SC and prototype foamy virus (PFV) intasome contain a tetramer of integrase (IN) that catalyzes concerted integration. HIV IN purified in the presence of 1 mM EDTA and 10 mM MgSO(4) was predominately a monomer. IN efficiently promoted concerted integration of micromolar concentrations of 3'-OH recessed and blunt-ended U5 long terminal repeat (LTR) oligonucleotide (ODN) substrates (19-42 bp) into circular target DNA. Varying HIV IN to U5 DNA showed that an IN dimer:DNA end molar ratio of 1 was optimal for concerted integration. Integration activities decreased with an increasing length of the ODN, starting from the recessed 18/20 or 19/21 bp set to the 31/33 and 40/42 bp set. Under these conditions, the average fidelity for the HIV 5 bp host site duplication with recessed and blunt-ended substrates was 56%. Modifications of U5 LTR sequences beyond 21 bp from the terminus on longer DNA (1.6 kb) did not alter the ~32 bp DNaseI protective footprint, suggesting viral sequences beyond 21 bp were not essential for IN binding. The results suggest IN binds differentially to an 18/20 bp than to a 40/42 bp ODN substrate for concerted integration. The HIV IN monomer may be a suitable candidate for attempting crystallization of an IN-DNA complex in the absence or presence of strand transfer inhibitors.  相似文献   

16.
Human immunodeficiency virus (HIV) integrase enzyme is required for the integration of viral DNA into the host cell chromosome. Integrase complex assembly and subsequent strand transfer catalysis are mediated by specific interactions between integrase and bases at the end of the viral long terminal repeat (LTR). The strand transfer reaction can be blocked by the action of small molecule inhibitors, thought to bind in the vicinity of the viral LTR termini. This study examines the contributions of the terminal four bases of the nonprocessed strand (G(2)T(1)C(-1)A(-2)) of the HIV LTR on complex assembly, specific strand transfer activity, and inhibitor binding. Base substitutions and abasic replacements at the LTR terminus provided a means to probe the importance of each nucleotide on the different functions. An approach is described wherein the specific strand transfer activity for each integrase/LTR variant is derived by normalizing strand transfer activity to the concentration of active sites. The key findings of this study are as follows. 1) The G(2):C(2) base pair is necessary for efficient assembly of the complex and for maintenance of an active site architecture, which has high affinity for strand transfer inhibitors. 2) Inhibitor-resistant enzymes exhibit greatly increased sensitivity to LTR changes. 3) The strand transfer and inhibitor binding defects of a Q148R mutant are due to a decreased affinity of the complex for magnesium. 4) Gln(148) interacts with G(2), T(1), and C(-1) at the 5' end of the viral LTR, with these four determinants playing important and overlapping roles in assembly, strand transfer catalysis and high affinity inhibitor binding.  相似文献   

17.
Successful integration of viral genome into a host chromosome depends on interaction between viral integrase and its recognition sequences. We have used a reconstituted concerted human immunodeficiency virus, type 1 (HIV-1), integration system to analyze the role of integrase (IN) recognition sequences in formation of the IN-viral DNA complex capable of concerted integration. HIV-1 integrase was presented with substrates that contained all 4 bases at 8 mismatched positions that define the inverted repeat relationship between U3 and U5 long terminal repeats (LTR) termini and at positions 17-19, which are conserved in the termini. Evidence presented indicates that positions 17-20 of the IN recognition sequences are needed for a concerted DNA integration mechanism. All 4 bases were found at each randomized position in sequenced concerted DNA integrants, although in some instances there were preferences for specific bases. These results indicate that integrase tolerates a significant amount of plasticity as to what constitutes an IN recognition sequence. By having several positions randomized, the concerted integrants were examined for statistically significant relationships between selections of bases at different positions. The results of this analysis show not only relationships between different positions within the same LTR end but also between different positions belonging to opposite DNA termini.  相似文献   

18.
Using purified integration protein (IN) from human immunodeficiency virus (HIV) type 1 and oligonucleotide mimics of viral and target DNA, we have investigated the DNA sequence specificity of the cleaving and joining reactions that take place during retroviral integration. The first reaction in this process is selective endonucleolytic cleaving of the viral DNA terminus that generates a recessed 3' OH group. This 3' OH group is then joined to a 5' phosphoryl group located at a break in the target DNA. We found that the conserved CA located close to the 3' end of the plus strand of the U5 viral terminus (also present on the minus strand of the U3 terminus) was required for both cleaving and joining reactions. Six bases of HIV U5 or U3 DNA at the ends of model substrates were sufficient for nearly maximal levels of selective endonucleolytic cleaving and joining. However, viral sequence elements upstream of the terminal 6 bases could also affect the efficiencies of the cleaving and joining reactions. The penultimate base (C) on the minus strand of HIV U5 was required for optimal joining activity. A synthetic oligonucleotide mimic of the putative in vivo viral "DNA" substrate for HIV IN, a molecule that contained a terminal adenosine 5'-phosphate (rA) on the minus strand, was indistinguishable in the cleaving and joining reactions from the DNA substrate containing deoxyadenosine instead of adenosine 5'-phosphate at the terminal position. Single-stranded DNA served as an in vitro integration target for HIV IN. The DNA sequence specificity of the joining reaction catalyzed in the reverse direction was also investigated.  相似文献   

19.
Retroviral integrases (INs) interact with termini of retroviral DNA in the conserved 5'-C(A/G)T. For most integrases, modifications of critical moieties in the major and minor grooves of these sequences decrease 3'-processing. However, for human immunodeficiency virus type-2 (HTLV-2) IN, the replacement of the guanine with 6-methylguanine or hypoxanthine not only reduced 3'-processing, but also promoted cleavage at a second site. This novel cleavage activity required an upstream ACA, unique to the HTLV-2 U5 end. 3'-Processing assays with additional isosteric modifications at Gua and filter binding experiments revealed that the mechanism of the second site cleavage differed among the major groove, minor groove, and mismatch modifications. Importantly, the decrease in 3'-processing activity noted with the minor groove and mismatch modifications were attributed to a decrease in binding. Major groove modifications, however, decreased the level of 3'-processing, but did not affect binding. This suggests that integrase binds the viral end through the minor groove, but relies on major groove contacts for 3'-processing. Several modifications were also examined in strand transfer and disintegration substrates. HTLV-2 IN showed reduced activity with strand transfer and disintegration substrates containing major groove, but not minor groove modifications. This suggests major groove interactions at guanine also provide an important role in these reactions.  相似文献   

20.
Insertion of the linear retrovirus DNA genome into the host DNA by the virus-encoded integrase (IN) is essential for efficient replication. We devised an efficient virus-like DNA plasmid integration assay which mimics the standard oligonucleotide assay for integration. It permitted us to study, by electron microscopy and sequence analysis, insertion of a single long terminal repeat terminus (LTR half-site) of one plasmid into another linearized plasmid. The reaction was catalyzed by purified avian myeloblastosis virus IN in the presence of Mg2+. The recombinant molecules were easily visualized and quantitated by agarose gel electrophoresis. Agarose gel-purified recombinants could be genetically selected by transformation of ligated recombinants into Escherichia coli HB101 cells. Electron microscopy also permitted the identification and localization of IN-DNA complexes on the virus-like substrate in the absence of the joining reaction. Intramolecular and intermolecular DNA looping by IN was visualized. Although IN preferentially bound to AT-rich regions in the absence of the joining reaction, there was a bias towards GC-rich regions for the joining reaction. Alignment of 70 target site sequences 5' of the LTR half-site insertions with 68 target sites previously identified for the concerted insertion of both LTR termini (LTR full-site reaction) indicated similar GC inflection patterns with both insertional events. Comparison of the data suggested that IN recognized only half of the target sequences necessary for integration with the LTR half-site reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号