首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At any moment during S phase, regions of genomic DNA are in various stages of replication (i.e. initiation, chain elongation, and termination). These stages may be differentially inhibited after treatment with various carcinogens that damage DNA such as UV. We used visualization of active replication units in combed DNA fibers, in combination with quantitative analyses of the size distributions of nascent DNA, to evaluate the role of S-checkpoint proteins in UV-induced inhibition of DNA replication. When HeLa cells were exposed to a low fluence (1 J/m2) of 254 nm UV light (UVC), new initiation events were severely inhibited (5-6-fold reduction). A larger fluence of UVC (10 J/m2) resulted in stronger inhibition of the overall rate of DNA synthesis without decreasing further the frequency of replicon initiation events. Incubation of HeLa cells with caffeine and knockdown of ATR or Chk1 kinases reversed the UVC-induced inhibition of initiation of new replicons. These findings illustrate the concordance of data derived from different experimental approaches, thus strengthening the evidence that the activation of the intra-S checkpoint by UVC is dependent on the ATR and Chk1 kinases.  相似文献   

2.
The Timeless-Tipin complex and Claspin are mediators of the ATR-dependent activation of Chk1 in the intra-S checkpoint response to stalled DNA replication forks. Tim-Tipin and Claspin also contribute to sister chromatid cohesion (SCC) in various organisms, likely through a replication-coupled process. Some models of the establishment of SCC posit that interactions between cohesin rings and replisomes could result in physiological replication stress requiring fork stabilization. The contributions of Timeless, Tipin, Claspin, Chk1 and ATR to SCC were investigated in genetically stable, human diploid fibroblast cell lines. Whereas Timeless, Tipin and Claspin showed similar contributions to UVC-induced activation of Chk1, siRNA-mediated knockdown of Timeless induced a 100-fold increase in sister chromatid discohesion, whereas the inductive effects of knocking down Tipin, Claspin and ATR were 4–20-fold. Knockdown of Chk1 did not significantly affect SCC. Consistent findings were obtained in two independently derived human diploid fibroblast lines and support a conclusion that SCC in human cells is strongly dependent on Timeless but independent of Chk1. Furthermore, the 10-fold difference in discohesion observed when depleting Timeless versus Tipin indicates that Timeless has a function in SCC that is independent of the Tim-Tipin complex, even though the abundance of Timeless is reduced when Tipin is targeted for depletion. A better understanding of how Timeless, Tipin and Claspin promote SCC will elucidate non-checkpoint functions of these proteins at DNA replication forks and inform models of the establishment of SCC.Key words: cohesion, intra-S checkpoint, Timeless, Tipin, Claspin, ATR, Chk1, human, fibroblast  相似文献   

3.
The ATR/CHK1-dependent intra-S checkpoint inhibits replicon initiation and replication fork progression in response to DNA damage caused by UV (UV) radiation. It has been proposed that this signaling cascade protects against UV-induced mutations by reducing the probability that damaged DNA will be replicated before it can be repaired. Normal human fibroblasts (NHF) were depleted of ATR or CHK1, or treated with the CHK1 kinase inhibitor TCS2312, and the UV-induced mutation frequency at the HPRT locus was measured. Despite clear evidence of S-phase checkpoint abrogation, neither ATR/CHK1 depletion nor CHK1 inhibition caused an increase in the UV-induced HPRT mutation frequency. These results question the premise that the UV-induced intra-S checkpoint plays a prominent role in protecting against UV-induced mutagenesis.  相似文献   

4.
In the fission yeast, Schizosaccharomyces pombe, blocks to DNA replication elongation trigger the intra-S phase checkpoint that leads to the activation of the Cds1 kinase. Cds1 is required to both prevent premature entry into mitosis and to stabilize paused replication forks. Interestingly, although Cds1 is essential to maintain the viability of mutants defective in DNA replication elongation, mutants defective in DNA replication initiation require the Chk1 kinase. This suggests that defects in DNA replication initiation can lead to activation of the DNA damage checkpoint independent of the intra-S phase checkpoint. This might result from reduced origin firing that leads to an increase in replication fork stalling or replication fork collapse that activates the G2 DNA damage checkpoint. We refer to the Chk1-dependent, Cds1-independent phenotype as the rid phenotype (for replication initiation defective). Chk1 is active in rid mutants, and rid mutant viability is dependent on the DNA damage checkpoint, and surprisingly Mrc1, a protein required for activation of Cds1. Mutations in Mrc1 that prevent activation of Cds1 have no effect on its ability to support rid mutant viability, suggesting that Mrc1 has a checkpoint-independent role in maintaining the viability of mutants defective in DNA replication initiation.  相似文献   

5.
Hydroxyurea (HU) treatment activates the intra-S phase checkpoint proteins Cds1 and Mrc1 to prevent replication fork collapse. We found that prolonged DNA synthesis occurs in cds1Δ and mrc1Δ checkpoint mutants in the presence of HU and continues after release. This is coincident with increased DNA damage measured by phosphorylated histone H2A in whole cells during release. High-resolution live-cell imaging shows that mutants first accumulate extensive replication protein A (RPA) foci, followed by increased Rad52. Both DNA synthesis and RPA accumulation require the MCM helicase. We propose that a replication fork “collapse point” in HU-treated cells describes the point at which accumulated DNA damage and instability at individual forks prevent further replication. After this point, cds1Δ and mrc1Δ forks cannot complete genome replication. These observations establish replication fork collapse as a dynamic process that continues after release from HU block.  相似文献   

6.
The regulation of DNA replication initiation is well documented, for both unperturbed and damaged cells. The regulation of elongation, or fork velocity, however, has only recently been revealed with the advent of new techniques allowing us to view DNA replication at the single cell and single DNA molecule levels. Normally in S phase, the progression of replication forks and their stability are regulated by the ATR-Claspin-Chk1 pathway. We recently showed that replication fork velocity varies across the human genome in normal and cancer cells, but that the velocity of a given fork is positively correlated with the distance between origins on the same DNA fiber. Accordingly, in DNA replication-deficient Bloom’s syndrome cells, reduced fork velocity is associated with an increased density of replication origins. Replication elongation is also regulated in response to DNA damage. In human colon carcinoma cells treated with the topoisomerase I inhibitor camptothecin, DNA replication is inhibited both at the level of initiation and at the level of elongation through a Chk1-dependent checkpoint mechanism. Together, these new findings demonstrate that replication fork velocity (fork progression) is coordinated with inter-origin distance and that it can be actively slowed down by Chk1-dependent mechanisms in response to DNA damage. Thus, we propose that the intra-S phase checkpoint consist of at least three elements: (1) stabilization of damaged replication forks; (2) suppression of firing of late origins; and (3) arrests of normal ongoing forks to prevent further DNA lesions by replication of a damaged DNA template.  相似文献   

7.
The Timeless-Tipin complex and Claspin are mediators of the ATR-dependent activation of Chk1 in the intra-S checkpoint response to stalled DNA replication forks. Tim-Tipin and Claspin also contribute to sister chromatid cohesion (SCC) in various organisms, likely through a replication-coupled process. Some models of the establishment of SCC posit that interactions between cohesin rings and replisomes could result in physiological replication stress requiring fork stabilization. The contributions of Timeless, Tipin, Claspin, Chk1 and ATR to SCC were investigated in genetically stable, human diploid fibroblast cell lines. Whereas Timeless, Tipin and Claspin showed similar contributions to UVC-induced activation of Chk1, siRNA-mediated knockdown of Timeless induced a 100-fold increase in sister chromatid discohesion, whereas the inductive effects of knocking down Tipin, Claspin and ATR were 4–20-fold. Knockdown of Chk1 did not significantly affect SCC. Consistent findings were obtained in two independently derived human diploid fibroblast lines and support a conclusion that SCC in human cells is strongly dependent on Timeless but independent of Chk1. Furthermore, the 10-fold difference in discohesion observed when depleting Timeless versus Tipin indicates that Timeless has a function in SCC that is independent of the Tim-Tipin complex, even though the abundance of Timeless is reduced when Tipin is targeted for depletion. A better understanding of how Timeless, Tipin and Claspin promote SCC will elucidate non-checkpoint functions of these proteins at DNA replication forks and inform models of the establishment of SCC.  相似文献   

8.
The Tim (Timeless)–Tipin complex has been proposed to maintain genome stability by facilitating ATR-mediated Chk1 activation. However, as a replisome component, Tim–Tipin has also been suggested to couple DNA unwinding to synthesis, an activity expected to suppress single-stranded DNA (ssDNA) accumulation and limit ATR–Chk1 pathway engagement. We now demonstrate that Tim–Tipin depletion is sufficient to increase ssDNA accumulation at replication forks and stimulate ATR activity during otherwise unperturbed DNA replication. Notably, suppression of the ATR–Chk1 pathway in Tim–Tipin-deficient cells completely abrogates nucleotide incorporation in S phase, indicating that the ATR-dependent response to Tim–Tipin depletion is indispensible for continued DNA synthesis. Replication failure in ATR/Tim-deficient cells is strongly associated with synergistic increases in H2AX phosphorylation and DNA double-strand breaks, suggesting that ATR pathway activation preserves fork stability in instances of Tim–Tipin dysfunction. Together, these experiments indicate that the Tim–Tipin complex stabilizes replication forks both by preventing the accumulation of ssDNA upstream of ATR–Chk1 function and by facilitating phosphorylation of Chk1 by ATR.  相似文献   

9.
During S-phase, the genome is extremely vulnerable and the progression of replication forks is often threatened by exogenous and endogenous challenges. When replication fork progression is halted, the intra S-phase checkpoint is activated to promote structural stability of stalled forks, preventing the dissociation of replisome components. This ensures the rapid resumption of replication following DNA repair. Failure in protecting and/or restarting the stalled forks contributes to alterations of the genome. Several human genetic diseases coupled to an increased cancer predisposition are caused by mutations in genes involved in safeguarding genome integrity during DNA replication. Both the ATR (ataxia telangiectasia and Rad3-related protein) kinase and the Replication pausing complex (RPC) components Tipin, Tim1 and Claspin play key roles in activating the intra S-phase checkpoint and in stabilizing the stalled replication forks. Here, we discuss the specific contribution of these factors in preserving fork structure and ensuring accurate completion of DNA replication.  相似文献   

10.
Mechanisms of replication fork protection: a safeguard for genome stability   总被引:1,自引:0,他引:1  
During S-phase, the genome is extremely vulnerable and the progression of replication forks is often threatened by exogenous and endogenous challenges. When replication fork progression is halted, the intra S-phase checkpoint is activated to promote structural stability of stalled forks, preventing the dissociation of replisome components. This ensures the rapid resumption of replication following DNA repair. Failure in protecting and/or restarting the stalled forks contributes to alterations of the genome. Several human genetic diseases coupled to an increased cancer predisposition are caused by mutations in genes involved in safeguarding genome integrity during DNA replication. Both the ATR (ataxia telangiectasia and Rad3-related protein) kinase and the Replication pausing complex (RPC) components Tipin, Tim1 and Claspin play key roles in activating the intra S-phase checkpoint and in stabilizing the stalled replication forks. Here, we discuss the specific contribution of these factors in preserving fork structure and ensuring accurate completion of DNA replication.  相似文献   

11.
Upon DNA damage, replication is inhibited by the S-phase checkpoint. ATR (ataxia telangiectasia mutated- and Rad3-related) is specifically involved in the inhibition of replicon initiation when cells are treated with DNA damage-inducing agents that stall replication forks, but the mechanism by which it acts to prevent replication is not yet fully understood. We observed that RPA2 is phosphorylated on chromatin in an ATR-dependent manner when replication forks are stalled. Mutation of the ATR-dependent phosphorylation sites in RPA2 leads to a defect in the down-regulation of DNA synthesis following treatment with UV radiation, although ATR activation is not affected. Threonine 21 and serine 33, two residues among several phosphorylation sites in the amino terminus of RPA2, are specifically required for the UV-induced, ATR-mediated inhibition of DNA replication. RPA2 mutant alleles containing phospho-mimetic mutations at ATR-dependent phosphorylation sites have an impaired ability to associate with replication centers, indicating that ATR phosphorylation of RPA2 directly affects the replication function of RPA. Our studies suggest that in response to UV-induced DNA damage, ATR rapidly phosphorylates RPA2, disrupting its association with replication centers in the S-phase and contributing to the inhibition of DNA replication.  相似文献   

12.
The Tipin/Tim1 complex plays an important role in the S‐phase checkpoint and replication fork stability. However, the biochemical function of this complex is poorly understood. Using Xenopus laevis egg extract we show that Tipin is required for DNA replication in the presence of limiting amount of replication origins. Under these conditions the DNA replication defect correlates with decreased levels of DNA Polα on chromatin. We identified And1, a Polα chromatin‐loading factor, as new Tipin‐binding partner. We found that both Tipin and And1 promote stable binding of Polα to chromatin and that this is required for DNA replication under unchallenged conditions. Strikingly, extracts lacking Tipin and And1 also show reduced sister chromatids cohesion. These data indicate that Tipin/Tim1/And1 form a complex that links stabilization of replication fork and establishment of sister chromatid cohesion.  相似文献   

13.
Tipin was originally isolated as a protein interacting with Timeless/Tim1/Tim (Tim), which is known to be involved in both circadian rhythm and cell cycle checkpoint regulation. The endogenous Tim and Tipin proteins in human cells, interacting through the N-terminal segment of each molecule, form a complex throughout the cell cycle. Tipin and Tim are expressed in the interphase nuclei mostly at constant levels during the cell cycle, and small fractions are recovered in the chromatin-enriched fractions during S phase. Depletion of endogenous Tipin results in reduced growth rate, and this may be due in part to inefficient progression of S phase and DNA synthesis. Knockdown of Tipin induces radioresistant DNA synthesis and inhibits phosphorylation of Chk1 kinase caused by replication stress, as was observed with that of Tim. Knockdown of Tipin or Tim results in reduced protein level and relocation to the cytoplasm of the respective binding partner, suggesting that the complex formation may be required for stabilization and nuclear accumulation of both proteins. Furthermore, both Tipin and Tim may facilitate the accumulation of Claspin in the nuclei under replication stress, whereas nuclear localization of Tipin and Tim is unaffected by Claspin. Our results indicate that mammalian Tipin is a checkpoint mediator that cooperates with Tim and may regulate the nuclear relocation of Claspin in response to replication checkpoint.  相似文献   

14.
In response to DNA damage and replication pausing, eukaryotes activate checkpoint pathways that prevent genomic instability by coordinating cell cycle progression with DNA repair. The intra-S-phase checkpoint has been proposed to protect stalled replication forks from pathological rearrangements that could result from unscheduled recombination. On the other hand, recombination may be needed to cope with either stalled forks or double-strand breaks resulting from hydroxyurea treatment. We have exploited fission yeast to elucidate the relationship between replication fork stalling, loading of replication and recombination proteins onto DNA, and the intra-S checkpoint. Here, we show that a functional recombination machinery is not essential for recovery from replication fork arrest and instead can lead to nonfunctional fork structures. We find that Rad22-containing foci are rare in S-phase cells, but peak in G2 phase cells after a perturbed S phase. Importantly, we find that the intra-S checkpoint is necessary to avoid aberrant strand-exchange events during a hydroxyurea block.  相似文献   

15.
The ATR-dependent intra-S checkpoint protects DNA replication forks undergoing replication stress. The checkpoint is enforced by ATR-dependent phosphorylation of CHK1, which is mediated by the TIMELESS-TIPIN complex and CLASPIN. Although loss of checkpoint proteins is associated with spontaneous chromosomal instability, few studies have examined the contribution of these proteins to unchallenged DNA metabolism in human cells that have not undergone carcinogenesis or crisis. Furthermore, the TIMELESS-TIPIN complex and CLASPIN may promote replication fork protection independently of CHK1 activation. Normal human fibroblasts (NHF) were depleted of ATR, CHK1, TIMELESS, TIPIN or CLASPIN and chromosomal aberrations, DNA synthesis, activation of the DNA damage response (DDR) and clonogenic survival were evaluated. This work demonstrates in NHF lines from two individuals that ATR and CHK1 promote chromosomal stability by different mechanisms that depletion of CHK1 produces phenotypes that resemble more closely the depletion of TIPIN or CLASPIN than the depletion of ATR, and that TIMELESS has a distinct contribution to suppression of chromosomal instability that is independent of its heterodimeric partner, TIPIN. Therefore, ATR, CHK1, TIMELESS-TIPIN and CLASPIN have functions for preservation of intrinsic chromosomal stability that are separate from their cooperation for activation of the intra-S checkpoint response to experimentally induced replication stress. These data reveal a complex and coordinated program of genome maintenance enforced by proteins known for their intra-S checkpoint function.  相似文献   

16.
The Epstein-Barr virus (EBV) genome is maintained as an extrachromosomal episome during latent infection of B lymphocytes. Episomal maintenance is conferred by the interaction of the EBV-encoded nuclear antigen 1 (EBNA1) with a tandem array of high-affinity binding sites, referred to as the family of repeats (FR), located within the viral origin of plasmid replication (OriP). How this nucleoprotein array confers episomal maintenance is not completely understood. Previous studies have shown that DNA replication forks pause and terminate with high frequency at OriP. We now show that cellular DNA replication fork pausing and protection factors Timeless (Tim) and Tipin (Timeless-interacting protein) accumulate at OriP during S phase of the cell cycle. Depletion of Tim inhibits OriP-dependent DNA replication and causes a complete loss of the closed-circular form of EBV episomes in latently infected B lymphocytes. Tim depletion also led to the accumulation of double-strand breaks at the OriP region. These findings demonstrate that Tim is essential for sustaining the episomal forms of EBV DNA in latently infected cells and suggest that DNA replication fork protection is integrally linked to the mechanism of plasmid maintenance.  相似文献   

17.
The S checkpoint response to ultraviolet radiation (UVC) that inhibits replicon initiation is dependent on the ATR and Chk1 kinases. Downstream effectors of this response, however, are not well characterized. Data reported here eliminated Cdc25A degradation and inhibition of Cdk2-cyclin E as intrinsic components of the UVC-induced pathway of inhibition of replicon initiation in human cells. A sublethal dose of UVC (1 J/m(2)), which selectively inhibits replicon initiation by 50%, failed to reduce the amount of Cdc25A protein or decrease Cdk2-cyclin E kinase activity. Cdc25A degradation was observed after irradiation with cytotoxic fluences of UVC, suggesting that severe inhibition of DNA chain elongation and activation of the replication checkpoint might be responsible for the UVC-induced degradation of Cdc25A. Another proposed effector of the S checkpoint is the Cdc7-Dbf4 complex. Dbf4 interacted weakly with Chk1 in vivo but was recognized as a substrate for Chk1-dependent phosphorylation in vitro. FLAG-Dbf4 formed complexes with endogenous Cdc7, and this interaction was stable in UVC-irradiated HeLa cells. Overexpression of FLAG- or Myc-tagged Dbf4 abrogated the S checkpoint response to UVC but not ionizing radiation. These findings implicate a Dbf4-dependent kinase as a possible target of the ATR- and Chk1-dependent S checkpoint response to UVC.  相似文献   

18.
DNA replication is inhibited by DNA damage through cis effects on replication fork progression and trans effects associated with checkpoints. In this study, we employed a combined pulse labeling and neutral-neutral two-dimensional gel-based approach to compare the effects of a DNA damaging agent frequently employed to invoke checkpoints, UVC radiation, on the replication of cellular and simian virus 40 (SV40) chromosomes in intact cells. UVC radiation induced similar inhibitory effects on the initiation and elongation phases of cellular and SV40 DNA replication. The initiation-inhibitory effects occurred independently of p53 and were abrogated by the ATM and ATR kinase inhibitor caffeine, or the Chk1 kinase inhibitor UCN-01. Inhibition of cellular origins was also abrogated by the expression of a dominant-negative Chk1 mutant. These results indicate that UVC induces a Chk1- and ATR or ATM-dependent checkpoint that targets both cellular and SV40 viral replication origins. Loss of Chk1 and ATR or ATM function also stimulated initiation of cellular and viral DNA replication in the absence of UVC radiation, revealing the existence of a novel intrinsic checkpoint that targets both cellular and SV40 viral origins of replication in the absence of DNA damage or stalled DNA replication forks. This checkpoint inhibits the replication in early S phase cells of a region of the repetitive rDNA locus that replicates in late S phase. The ability to detect these checkpoints using the well characterized SV40 model system should facilitate analysis of the molecular basis for these effects.  相似文献   

19.
Orderly progression of S phase requires the action of replisome-associated Tipin and Tim1 proteins, whose molecular function is poorly understood. Here, we show that Tipin deficiency leads to the accumulation of aberrant replication intermediates known as reversed forks. We identified Mta2, a subunit of the NuRD chromatin remodeler complex, as a novel Tipin binding partner and mediator of its function. Mta2 is required for Tipin-dependent Polymerase α binding to replicating chromatin, and this function is essential to prevent the accumulation of reversed forks. Given the role of the Mta2–NuRD complex in the maintenance of heterochromatin, which is usually associated with hard-to-replicate DNA sequences, we tested the role of Tipin in the replication of such regions. Using a novel assay we developed to monitor replication of specific genomic loci in Xenopus laevis egg extract we demonstrated that Tipin is directly required for efficient replication of vertebrate centromeric DNA. Overall these results suggest that Mta2 and Tipin cooperate to maintain replication fork integrity, especially on regions that are intrinsically difficult to duplicate.  相似文献   

20.
The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号