首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m(2) UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.  相似文献   

2.
The Timeless-Tipin complex and Claspin are mediators of the ATR-dependent activation of Chk1 in the intra-S checkpoint response to stalled DNA replication forks. Tim-Tipin and Claspin also contribute to sister chromatid cohesion (SCC) in various organisms, likely through a replication-coupled process. Some models of the establishment of SCC posit that interactions between cohesin rings and replisomes could result in physiological replication stress requiring fork stabilization. The contributions of Timeless, Tipin, Claspin, Chk1 and ATR to SCC were investigated in genetically stable, human diploid fibroblast cell lines. Whereas Timeless, Tipin and Claspin showed similar contributions to UVC-induced activation of Chk1, siRNA-mediated knockdown of Timeless induced a 100-fold increase in sister chromatid discohesion, whereas the inductive effects of knocking down Tipin, Claspin and ATR were 4–20-fold. Knockdown of Chk1 did not significantly affect SCC. Consistent findings were obtained in two independently derived human diploid fibroblast lines and support a conclusion that SCC in human cells is strongly dependent on Timeless but independent of Chk1. Furthermore, the 10-fold difference in discohesion observed when depleting Timeless versus Tipin indicates that Timeless has a function in SCC that is independent of the Tim-Tipin complex, even though the abundance of Timeless is reduced when Tipin is targeted for depletion. A better understanding of how Timeless, Tipin and Claspin promote SCC will elucidate non-checkpoint functions of these proteins at DNA replication forks and inform models of the establishment of SCC.Key words: cohesion, intra-S checkpoint, Timeless, Tipin, Claspin, ATR, Chk1, human, fibroblast  相似文献   

3.
The Timeless-Tipin complex and Claspin are mediators of the ATR-dependent activation of Chk1 in the intra-S checkpoint response to stalled DNA replication forks. Tim-Tipin and Claspin also contribute to sister chromatid cohesion (SCC) in various organisms, likely through a replication-coupled process. Some models of the establishment of SCC posit that interactions between cohesin rings and replisomes could result in physiological replication stress requiring fork stabilization. The contributions of Timeless, Tipin, Claspin, Chk1 and ATR to SCC were investigated in genetically stable, human diploid fibroblast cell lines. Whereas Timeless, Tipin and Claspin showed similar contributions to UVC-induced activation of Chk1, siRNA-mediated knockdown of Timeless induced a 100-fold increase in sister chromatid discohesion, whereas the inductive effects of knocking down Tipin, Claspin and ATR were 4–20-fold. Knockdown of Chk1 did not significantly affect SCC. Consistent findings were obtained in two independently derived human diploid fibroblast lines and support a conclusion that SCC in human cells is strongly dependent on Timeless but independent of Chk1. Furthermore, the 10-fold difference in discohesion observed when depleting Timeless versus Tipin indicates that Timeless has a function in SCC that is independent of the Tim-Tipin complex, even though the abundance of Timeless is reduced when Tipin is targeted for depletion. A better understanding of how Timeless, Tipin and Claspin promote SCC will elucidate non-checkpoint functions of these proteins at DNA replication forks and inform models of the establishment of SCC.  相似文献   

4.
During S-phase, the genome is extremely vulnerable and the progression of replication forks is often threatened by exogenous and endogenous challenges. When replication fork progression is halted, the intra S-phase checkpoint is activated to promote structural stability of stalled forks, preventing the dissociation of replisome components. This ensures the rapid resumption of replication following DNA repair. Failure in protecting and/or restarting the stalled forks contributes to alterations of the genome. Several human genetic diseases coupled to an increased cancer predisposition are caused by mutations in genes involved in safeguarding genome integrity during DNA replication. Both the ATR (ataxia telangiectasia and Rad3-related protein) kinase and the Replication pausing complex (RPC) components Tipin, Tim1 and Claspin play key roles in activating the intra S-phase checkpoint and in stabilizing the stalled replication forks. Here, we discuss the specific contribution of these factors in preserving fork structure and ensuring accurate completion of DNA replication.  相似文献   

5.
Mechanisms of replication fork protection: a safeguard for genome stability   总被引:1,自引:0,他引:1  
During S-phase, the genome is extremely vulnerable and the progression of replication forks is often threatened by exogenous and endogenous challenges. When replication fork progression is halted, the intra S-phase checkpoint is activated to promote structural stability of stalled forks, preventing the dissociation of replisome components. This ensures the rapid resumption of replication following DNA repair. Failure in protecting and/or restarting the stalled forks contributes to alterations of the genome. Several human genetic diseases coupled to an increased cancer predisposition are caused by mutations in genes involved in safeguarding genome integrity during DNA replication. Both the ATR (ataxia telangiectasia and Rad3-related protein) kinase and the Replication pausing complex (RPC) components Tipin, Tim1 and Claspin play key roles in activating the intra S-phase checkpoint and in stabilizing the stalled replication forks. Here, we discuss the specific contribution of these factors in preserving fork structure and ensuring accurate completion of DNA replication.  相似文献   

6.
Human claspin is required for replication checkpoint control   总被引:2,自引:0,他引:2  
Claspin is a newly identified protein that regulates Chk1 activation in Xenopus. In the present study we investigated the role of human Claspin in the DNA damage/replication checkpoint in mammalian cells. We observed that human Claspin is a cell cycle regulated protein that peaks at S/G2 phase. Claspin localizes in the nuclei, but it only associates with Chk1 following replication stress or other types of DNA damage. In addition, Claspin is phosphorylated in response to replication stress, and this phosphorylation appears to be required for its association with Chk1. Moreover, Claspin interacts with the checkpoint proteins ATR and Rad9. Given that both the ATR and Rad9-Rad1-Hus1 complexes are involved in Chk1 activation, it is possible that Claspin works as an adaptor molecule bringing these molecules together. Using small interfering RNA technology, we have shown that down-regulation of Claspin expression inhibits Chk1 activation in response to replication stress. More importantly, down-regulation of Claspin augments the premature chromatin condensation induced by hydroxyurea, inhibits the UV-induced reduction of DNA synthesis, and decreases cell survival. Taken together, these data imply a potentially critical role for Claspin in replication checkpoint control in mammalian cells.  相似文献   

7.
The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.  相似文献   

8.
The Tipin/Tim1 complex plays an important role in the S‐phase checkpoint and replication fork stability. However, the biochemical function of this complex is poorly understood. Using Xenopus laevis egg extract we show that Tipin is required for DNA replication in the presence of limiting amount of replication origins. Under these conditions the DNA replication defect correlates with decreased levels of DNA Polα on chromatin. We identified And1, a Polα chromatin‐loading factor, as new Tipin‐binding partner. We found that both Tipin and And1 promote stable binding of Polα to chromatin and that this is required for DNA replication under unchallenged conditions. Strikingly, extracts lacking Tipin and And1 also show reduced sister chromatids cohesion. These data indicate that Tipin/Tim1/And1 form a complex that links stabilization of replication fork and establishment of sister chromatid cohesion.  相似文献   

9.
Polo-like kinase (Plk)1 is required for mitosis progression. However, although Plk1 is expressed throughout the cell cycle, its function during S-phase is unknown. Using Xenopus laevis egg extracts, we demonstrate that Plx1, the Xenopus orthologue of Plk1, is required for DNA replication in the presence of stalled replication forks induced by aphidicolin, etoposide or reduced levels of DNA-bound Mcm complexes. Plx1 binds to chromatin and suppresses the ATM/ATR-dependent intra-S-phase checkpoint that inhibits origin firing. This allows Cdc45 loading and derepression of DNA replication initiation. Checkpoint activation increases Plx1 binding to the Mcm complex through its Polo box domain. Plx1 recruitment to chromatin is independent of checkpoint mediators Tipin and Claspin. Instead, ATR-dependent phosphorylation of serine 92 of Mcm2 is required for the recruitment of Plx1 to chromatin and for the recovery of DNA replication under stress. Depletion of Plx1 leads to accumulation of chromosomal breakage that is prevented by the addition of recombinant Plx1. These data suggest that Plx1 promotes genome stability by regulating DNA replication under stressful conditions.  相似文献   

10.
The Tim (Timeless)–Tipin complex has been proposed to maintain genome stability by facilitating ATR-mediated Chk1 activation. However, as a replisome component, Tim–Tipin has also been suggested to couple DNA unwinding to synthesis, an activity expected to suppress single-stranded DNA (ssDNA) accumulation and limit ATR–Chk1 pathway engagement. We now demonstrate that Tim–Tipin depletion is sufficient to increase ssDNA accumulation at replication forks and stimulate ATR activity during otherwise unperturbed DNA replication. Notably, suppression of the ATR–Chk1 pathway in Tim–Tipin-deficient cells completely abrogates nucleotide incorporation in S phase, indicating that the ATR-dependent response to Tim–Tipin depletion is indispensible for continued DNA synthesis. Replication failure in ATR/Tim-deficient cells is strongly associated with synergistic increases in H2AX phosphorylation and DNA double-strand breaks, suggesting that ATR pathway activation preserves fork stability in instances of Tim–Tipin dysfunction. Together, these experiments indicate that the Tim–Tipin complex stabilizes replication forks both by preventing the accumulation of ssDNA upstream of ATR–Chk1 function and by facilitating phosphorylation of Chk1 by ATR.  相似文献   

11.
Chini CC  Chen J 《DNA Repair》2004,3(8-9):1033-1037
Regulation of the vertebrate checkpoint kinase Chk1 involves several protein complexes including the recently identified protein Claspin. Claspin associates with Chk1 upon replication stress and DNA damage and is required for Chk1 activation in both Xenopus and human systems. More importantly, Claspin is involved in regulation of cell cycle checkpoints. Here, we discuss the emerging roles of Claspin in the Chk1 pathway and its functions in checkpoint control.  相似文献   

12.
The Epstein-Barr virus (EBV) genome is maintained as an extrachromosomal episome during latent infection of B lymphocytes. Episomal maintenance is conferred by the interaction of the EBV-encoded nuclear antigen 1 (EBNA1) with a tandem array of high-affinity binding sites, referred to as the family of repeats (FR), located within the viral origin of plasmid replication (OriP). How this nucleoprotein array confers episomal maintenance is not completely understood. Previous studies have shown that DNA replication forks pause and terminate with high frequency at OriP. We now show that cellular DNA replication fork pausing and protection factors Timeless (Tim) and Tipin (Timeless-interacting protein) accumulate at OriP during S phase of the cell cycle. Depletion of Tim inhibits OriP-dependent DNA replication and causes a complete loss of the closed-circular form of EBV episomes in latently infected B lymphocytes. Tim depletion also led to the accumulation of double-strand breaks at the OriP region. These findings demonstrate that Tim is essential for sustaining the episomal forms of EBV DNA in latently infected cells and suggest that DNA replication fork protection is integrally linked to the mechanism of plasmid maintenance.  相似文献   

13.
Mammalian Timeless is a multifunctional protein that performs essential roles in the circadian clock, chromosome cohesion, DNA replication fork protection, and DNA replication/DNA damage checkpoint pathways. The human Timeless exists in a tight complex with a smaller protein called Tipin (Timeless-interacting protein). Here we investigated the mechanism by which the Timeless-Tipin complex functions as a mediator in the ATR-Chk1 DNA damage checkpoint pathway. We find that the Timeless-Tipin complex specifically mediates Chk1 phosphorylation by ATR in response to DNA damage and replication stress through interaction of Tipin with the 34-kDa subunit of replication protein A (RPA). The Tipin-RPA interaction stabilizes Timeless-Tipin and Tipin-Claspin complexes on RPA-coated ssDNA and in doing so promotes Claspin-mediated phosphorylation of Chk1 by ATR. Our results therefore indicate that RPA-covered ssDNA not only supports recruitment and activation of ATR but also, through Tipin and Claspin, it plays an important role in the action of ATR on its critical downstream target Chk1.  相似文献   

14.
We have identified Claspin, a novel protein that binds to Xenopus Chk1 (Xchk1). Binding of Claspin to Xchk1 is highly elevated in the presence of DNA templates that trigger a checkpoint arrest of the cell cycle in Xenopus egg extracts. Xchk1 becomes phosphorylated during a checkpoint response, and we demonstrate directly that this phosphorylation results in the activation of Xchk1. Immunodepletion of Claspin from egg extracts abolishes both the phosphorylation and activation of Xchk1. Furthermore, Claspin-depleted extracts are unable to arrest the cell cycle in response to DNA replication blocks. Taken together, these findings indicate that Claspin is an essential upstream regulator of Xchk1.  相似文献   

15.
The replication checkpoint protein Claspin is important for maintenance of genomic stability and is required for cells to overcome genotoxic stress. Upon UV-induced DNA damage, Claspin is required for activation of the ATR-mediated DNA damage checkpoint response, leading to arrest of DNA replication and inhibition of cell cycle progression. Located at the DNA replication fork, Claspin is also suggested to monitor replication and sense damage. Our present studies in HeLa cells demonstrate associations between the Claspin/ATR-related DNA damage checkpoint response and the global genomic nucleotide excision repair pathway. siRNA-mediated knockdown of Claspin abolishes the UV-induced degradation of DDB2 and impairs the co-localization of DDB2 to DNA damage sites. Thus, the presence of Claspin is required for the total turnover of DNA damage binding protein DDB2, as well as for its functionality in DNA damage recognition. Claspin, however, seems not to be required for maintaining the cellular level of the NER factor XPC and its UV-induced post-translational modifications. Co-localization of XPC with DNA lesions is also intact in the absence of Claspin as is the repair of the UV-induced lesions CPD and 6-4PP. Claspin itself may be directly responsible for physical interaction between the two pathways since Claspin is able to associate with DDB1, DDB2 and XPC. Taken together, these findings reveal physical and functional interplay between Claspin and NER-related proteins and demonstrate crosstalk between the DNA damage checkpoint control and DNA damage repair pathways.  相似文献   

16.
Cancer remains one of the leading causes of mortality worldwide. Most cancers present high degrees of genomic instability. DNA damage and replication checkpoints function as barriers to halt cell cycle progression until damage is resolved, preventing the perpetuation of errors. Activation of these checkpoints is critically dependent on Claspin, an adaptor protein that mediates the phosphorylation of the effector kinase Chk1 by ATR. However, Claspin also performs other roles related to the protection and maintenance of cell and genome integrity. For instance, following DNA damage and checkpoint activation, Claspin bridges checkpoint responses to DNA repair or to apoptosis. During DNA replication, Claspin acts a sensor and couples DNA unwinding to strand polymerization, and may also indirectly regulate replication initiation at firing origins. As Claspin participates in several processes that are vital to maintenance of cell homeostasis, its function is tightly regulated at multiple levels. Nevertheless, little is known about its role in cancer. Accumulating evidence suggests that Claspin inactivation could be an essential event during carcinogenesis, indicating that Claspin may function as a tumour suppressor. In this review, we will examine the functions of Claspin and how its deregulation may contribute to cancer initiation and progression. To conclude, we will discuss means by which Claspin can be targeted for cancer therapy.  相似文献   

17.
The function of the mammalian TIMELESS protein (TIM) has been enigmatic. TIM is essential for early embryonic development, but little is known regarding its biochemical and cellular function. Although identified based on similarity to a Drosophila circadian clock factor, it also shares similarity with a second family of proteins that is more widely conserved throughout eukaryotes. Members of this second protein family in yeast (S.c. Tof1p, S.p. Swi1p) have been implicated in DNA synthesis, S-phase-dependent checkpoint activation and chromosome cohesion, three processes coordinated at the level of the replication fork complex. The present work demonstrates that mammalian TIM and its constitutive binding partner, Tipin (ortholog of S.c. Csm3p, S.p. Swi3p), are replisome-associated proteins. Both proteins associate with components of the endogenous replication fork complex, and are present at BrdU-positive DNA replication sites. Knock-down of TIM also compromises DNA replication efficiency. Further, the direct binding of the TIM-Tipin complex to the 34 kDa subunit of replication protein A provides a biochemical explanation for the potential coupling role of these proteins. Like TIM, Tipin is also involved in the molecular mechanism of UV-dependent checkpoint activation and cell growth arrest. Tipin additionally associates with peroxiredoxin2 and appears to be involved in checkpoint responses to H(2)O(2), a role recently described for yeast versions of TIM and Tipin. Together, this work establishes TIM and Tipin as functional orthologs of their replisome-associated yeast counterparts capable of coordinating replication with genotoxic stress responses, and distinguishes mammalian TIM from the circadian-specific paralogs from which it was originally identified.  相似文献   

18.
19.
Yilmaz S  Sancar A  Kemp MG 《PloS one》2011,6(7):e22986
The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses.  相似文献   

20.
Lee J  Kumagai A  Dunphy WG 《Molecular cell》2003,11(2):329-340
Claspin is required for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. We show here that Claspin associates with chromatin in a regulated manner during S phase. Binding of Claspin to chromatin depends on the pre-replication complex (pre-RC) and Cdc45 but not on replication protein A (RPA). These dependencies suggest that binding of Claspin occurs around the time of initial DNA unwinding at replication origins. By contrast, both ATR and Rad17 require RPA for association with DNA. Claspin, ATR, and Rad17 all bind to chromatin independently. These findings suggest that Claspin plays a role in monitoring DNA replication during S phase. Claspin, ATR, and Rad17 may collaborate in checkpoint regulation by detecting different aspects of a DNA replication fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号