首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Boggs JM  Rangaraj G 《Biochemistry》2000,39(26):7799-7806
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes (OLs) and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. MBP in solution has been shown by others to bind to both G- and F-actin, to bundle F-actin filaments, and to induce polymerization of G-actin. Here we show that MBP bound to acidic lipids can also bind to both G- and F-actin and cause their sedimentation together with MBP-lipid vesicles. Thus it can simultaneously utilize some of its basic residues to bind to the lipid bilayer and some to bind to actin. The amount of actin bound to the MBP-lipid vesicles decreased with increasing net negative surface charge of the lipid vesicles. It was also less for vesicles containing the lipid composition predicted for the cytosolic surface of myelin than for PC vesicles containing a similar amount of an acidic lipid. Calmodulin caused dissociation of actin from MBP and of the MBP-actin complex from the vesicles. However, it did not cause dissociation of bundles of actin filaments once these had formed as long as some MBP was still present. These results suggest that MBP could be a membrane actin-binding protein in OLs/myelin and its actin binding can be regulated by calmodulin and by the lipid composition of the membrane. Actin binding to MBP decreased the labeling of MBP by the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine (TID), indicating that it decreased the hydrophobic interactions of MBP with the bilayer. This change in interaction of MBP with the bilayer could then create a cytosol to membrane signal caused by changes in interaction of the cytoskeleton with the membrane.  相似文献   

2.
Myelin basic protein is a water soluble membrane protein which interacts with acidic lipids through some type of hydrophobic interaction in addition to electrostatic interactions. Here we show that it can be labeled from within the lipid bilayer when bound to acidic lipids with the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID) and by two lipid photolabels. The latter included one with the reactive group near the apolar/polar interface and one with the reactive group linked to an acyl chain to position it deeper in the bilayer. The regions of the protein which interact hydrophobically with lipid to the greatest extent were determined by cleaving the TID-labeled myelin basic protein (MBP) with cathepsin D into peptides 1-43, 44-89, and 90-170. All three peptides from lipid-bound protein were labeled much more than peptides from the protein labeled in solution. However, the peptide labeling pattern was similar for both environments. The two peptides in the N-terminal half were labeled similarly and about twice as much as the C-terminal peptide indicating that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half. MBP can be modified post-translationally in vivo, including by deamidation, which may alter its interactions with lipid. However, deamidation had no effect on the TID labeling of MBP or on the labeling pattern of the cathepsin D peptides. The site of deamidation has been reported to be in the C-terminal half, and its lack of effect on hydrophobic interactions of MBP with lipid are consistent with the conclusion that the N-terminal half interacts hydrophobically more than the C-terminal half. Since other studies of the interaction of isolated N-terminal and C-terminal peptides with lipid also indicate that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half, these results from photolabeling of the intact protein suggest that the N-terminal half of the intact protein interacts with lipid in a similar way as the isolated peptide. The similar behavior of the intact protein to that of its isolated peptides suggests that when the purified protein binds to acidic lipids, it is in a conformation which allows both halves of the protein to interact independently with the lipid bilayer. That is, it does not form a hydrophobic domain made up from different parts of the protein.  相似文献   

3.
In aqueous solution bovine myelin basic protein exhibits no significant alpha-helical or beta-pleated sheet structure. However, in vivo this protein is associated largely with the myelin membrane: experiments have therefore been performed to determine the structure of the protein when bound to lipid bilayers. Circular dichroism spectra show that this protein undergoes a major conformational change on binding to lipid bilayer vesicles formed from diacylphosphatidylserine or diacylphosphatidic acid, and on binding to micelles of several detergents. Association with diacylphosphatidylcholine failed to induce a structural change: this observation is interpreted in terms of an earlier report that lysophosphatidylcholine does increase the alpha-helical content of basic protein. These circular dichroism measurements and studies of the binding to the bilayer-forming lipids appear to provide support for significant hydrophobic lipid-protein interactions. Similar studies using two peptides produced by cleavf basic protein indicate that a major structure-forming region in the middle of the protein has been disrupted by this scission.  相似文献   

4.
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.  相似文献   

5.
Complement-mediated lysis of reconstituted lipid-myelin basic protein (BP) vesicles and myelin vesicles due to antibody raised against BP and isolated myelin is measured by determination of the amount of a water-soluble spin label, tempocholine chloride, released from the vesicles. The response is shown to be antigen-specific, antibody-dependent, and complement mediated. The relative response to different anti-BP antibody samples is similar to that determined by radioimmunoassay procedures. In contrast to immunoassays with BP in aqueous solution, this method measures immune recognition of the protein in either a synthetic or a natural membranous environment. This is important because this protein has been shown to have a different conformation when bound to lipid bilayers than in aqueous solution and its conformation depends on lipid composition. It is also a more rapid method because no separation of spin label still trapped in the vesicles and that released due to immune lysis is required. In synthetic membranes consisting of sphingomyelin, cholesterol, and an acidic lipid, either phosphatidylglycerol, phosphatidic acid, or phosphatidylserine, the response was greatest when the acidic lipid was phosphatidic acid. The response did not depend significantly on the antigen concentration expressed as molar ratio of BP to sphingomyelin, over the range 0.15:600 to 2:600, although it decreased at molar ratios less than 0.15:600. The antigen density required for immune lysis of vesicles containing this protein antigen is similar to that reported elsewhere for lipid antigens, although the time required for maximal lysis was greater. Both anti-BP and anti-myelin antibodies caused a greater specific complement-mediated response with synthetic vesicles than with myelin vesicles, which may be due to the different lipid and/or protein composition of myelin. Response was also obtained with the myelin vesicles, however, indicating that some determinants of BP can be recognized on the surface of the bilayer in isolated myelin by anti-BP.  相似文献   

6.
The precipitation by antibodies to intact myelin basic protein (BP) and to synthetic peptides containing a sequence based on the region 65 to 83 of bovine BP, S82, S81, S79, and S24, of intact BP in solution or bound to lipid vesicles was compared, using 125I-BP or 14C-DPPC-labeled lipid-BP vesicles. The antipeptide antibodies were shown earlier to recognize conformational determinants which are not expressed in the intact protein in solution. Several anti-BP antibodies precipitated more of the BP free in solution than when bound to lipid vesicles, suggesting that some of the determinants recognized by these antibodies were either sequestered in the bilayer or were altered in conformation. In contrast, one anti-peptide antisera, which had a high titer for the conformational determinant in two of these peptides, S82 and S81, precipitated the protein to a significant degree when it was bound to PG vesicles, even though it did not react with the intact protein in solution. These results indicated that PG was able to confer on the protein the unique peptide conformation recognized by this antibody. PS was less effective, and other lipids were ineffective at conferring this conformation on the protein, supporting earlier results which showed that the conformation of the protein is influenced by the lipid composition of its environment. None of the other anti-peptide antibodies studied bound to the protein either in solution or in lipid vesicles. These results indicate that the lipid environment can sequester or alter the conformation of some antigenic determinants, preventing recognition by some anti-BP antibodies, and can expose or generate other conformational determinants, allowing recognition by an anti-peptide antiserum.  相似文献   

7.
Several biologically important peripheral (e.g., myristoylated alanine-rich C kinase substrate) and integral (e.g., the epidermal growth factor receptor) membrane proteins contain clusters of basic residues that interact with acidic lipids in the plasma membrane. Previous measurements demonstrate that the polyvalent acidic lipid phosphatidylinositol 4,5-bisphosphate is bound electrostatically (i.e., sequestered) by membrane-adsorbed basic peptides corresponding to these clusters. We report here three experimental observations that suggest monovalent acidic lipids are not sequestered by membrane-bound basic peptides. 1), Binding of basic peptides to vesicles does not decrease when the temperature is lowered below the fluid-to-gel phase transition. 2), The binding energy of Lys-13 to lipid vesicles increases linearly with the fraction of monovalent acidic lipids. 3), Binding of basic peptides to vesicles produces no self-quenching of fluorescent monovalent acidic lipids. One potential explanation for these results is that membrane-bound basic peptides diffuse too rapidly for the monovalent lipids to be sequestered. Indeed, our fluorescence correlation spectroscopy measurements show basic peptides bound to phosphatidylcholine/phosphatidylserine membranes have a diffusion coefficient approximately twofold higher than that of lipids, and those bound to phosphatidylcholine/phosphatidylinositol 4,5-bisphosphate membranes have a diffusion coefficient comparable to that of lipids.  相似文献   

8.
The fluorescence characteristics of lipophilin, a proteolipid apoprotein from human myelin, were determined in aqueous and lipid environments. In all cases the tryptophan residues were located in buried hydrophobic sites of uniform, but limited, accessibility to the permeant quenching agent acrylamide; only in the helicogenic solvent 2-chloroethanol were the protein fluorophores exposed to the medium. Quantum yields were dependent on the state of aggregation of the protein in aqueous solution and increased considerably on treatment with lysolecithin micelles, or when the protein was combined with phosphatidylcholine by codialysis from 2-chloroethanol into water. Fluorescence titrations indicated that lipophilin bound to lysolecithin with an association constant greater than 10(6) L/mol. Radiationless singlet excitation energy transfer from tyrosine to tryptophan residues was found to decrease markedly when the protein was combined with lipids. When the protein was introduced into dimyristoylphosphatidylcholine vesicles, the tryptophan fluorescence did not detect any solid-liquid phase change. These results were consistent with strong hydrophobic interactions between lipophilin and phospholipids, which lead to conformational adjustments in the protein, and to establishment of an immobilized layer of boundary lipid in bilayer systems.  相似文献   

9.
Several groups have observed that phosphorylation causes the MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) protein to move off cell membranes and phospholipid vesicles. Our working hypothesis is that significant membrane binding of MARCKS requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic association of the single cluster of basic residues in the protein with acidic lipids and that phosphorylation reverses this electrostatic association. Membrane binding measurements with myristoylated peptides and phospholipid vesicles show this hydrophobic moiety could, at best, barely attach proteins to plasma membranes. We report here membrane binding measurements with basic peptides that correspond to the phosphorylation domains of MARCKS and neuromodulin. Binding of these peptides increases sigmoidally with the percent acidic lipid in the phospholipid vesicle and can be described by a Gouy-Chapman/mass action theory that explains how electrostatics and reduction of dimensionality produce apparent cooperativity. The electrostatic affinity of the MARCKS peptide for membranes containing 10% acidic phospholipids (10(4) M-1 = chi/[P], where chi is the mole ratio of peptide bound to the outer monolayer of the vesicles and [P] is the concentration of peptide in the aqueous phase) is the same as the hydrophobic affinity of the myristate moiety for bilayer membranes. Phosphorylation decreases the affinity of the MARCKS peptide for membranes containing 15% acidic lipid about 1000-fold and produces a rapid (t1/2 < 30 s) dissociation of the peptide from phospholipid vesicles.  相似文献   

10.
X-ray diffraction techniques have been used to study the structures of lipid bilayers containing basic proteins. Highly ordered multilayer specimens have been formed by using the Langmuir-Blodgett method in which a solid support is passed through a lipid monolayer held at constant surface pressure at an air/water interface. If the lipid monolayer contains acidic lipids then basic proteins in the aqueous subphase are transferred with the monolayer and incorporated into the multi-membrane stack. X-ray diffraction patterns have been recorded from multilayers of cerebroside sulphate and 40% (molar) cholesterol both with and without polylysine, cytochrome c and the basic protein from central nervous system myelin. Electron density profiles across the membranes have been derived at between 6 A and 12 A resolution. All of the membrane profiles have been placed on an absolute scale of electron density by the isomorphous exchange of cholesterol with a brominated cholesterol analog. The distributions and conformations of the various basic proteins incorporated within the cerebroside sulphate/cholesterol bilayer are very different. Polylysine attaches to the surface of the lipid bilayer as a fully extended chain while cytochrome c maintains its native structure and attaches to the bilayer surface with its short axis approximately perpendicular to the membrane plane. The myelin basic protein associates intimately with the lipid headgroups in the form of an extended molecule, yet its dimension perpendicular to the plane of the membrane of approx. 15 A is consistent with the considerable degree of secondary structure found in solution. In the membrane plane, the myelin basic protein extends to cover an area of about 2500 A2. There is no significant penetration of the protein into the hydrocarbon region of the bilayer or, indeed, beyond the position of the sulphate group of the cerebroside sulphate molecule.  相似文献   

11.
The lysozyme-induced fusion of phosphatidylserine/phosphatidylethanolamine vesicles as studied at a wide range of pH is found to correlate well with the binding of this protein to the vesicles. An identical 6000 molecular weight segment of lysozyme at the N-terminal region is found to be protected from tryptic digestion when initially incubated with vesicles at several pH values. Only this segment is labeled by dansyl chloride, which is partitioned into the bilayer. These results suggest the penetration of one segment of lysozyme into the bilayer. Photoactivated labeling of the membrane-penetrating segment of lysozyme with 3-(trifluoromethyl)-3-([125I]iodophenyl)diazirine ([125I]TID) and subsequent identification of the labeled residues by Edman degradation and gamma-ray counting indicate that four amino acids from the N-terminal are located outside the hydrophobic core of the bilayer. Although treatment of the membrane-embedded segment with aminopeptidase failed to cleave any amino acids from the N-terminal, it appears that a loop of lysozyme segment near the N-terminal penetrates into the bilayer at acidic pH. A helical wheel diagram shows that the labeling is done mainly on one surface of the alpha-helix. The penetration kinetics as studied by time-dependent [125I]TID labeling coincide with the fusion kinetics, strongly suggesting that the penetration of the lysozyme segment into the vesicles is the cause of the fusion.  相似文献   

12.
Voltage-sensitive sodium channels purified from rat brain in functional form consist of a stoichiometric complex of three glycoprotein subunits, alpha of 260 kDa, beta 1 of 36 kDa, and beta 2 of 33 kDa. The alpha and beta 2 subunits are linked by disulfide bonds. The hydrophobic properties of these three subunits were examined by covalent labeling with the photoreactive hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) which labels transmembrane segments in integral membrane proteins. All three subunits of the sodium channel were labeled by [125I]TID when the purified protein was solubilized in mixed micelles of Triton X-100 and phosphatidylcholine (4:1). The half-time for photolabeling was approximately 7 min consistent with the half-time of 9 min for photolysis of TID under our conditions. Comparable amounts of TID per mg of protein were incorporated into each subunit. Purified sodium channels reconstituted in phosphatidylcholine vesicles were also labeled by TID with comparable incorporation per mg of protein into all three subunits. The efficiency of photolabeling of the three subunits was reduced from 39 to 44% by a 2-fold expansion of the hydrophobic phase of the reaction mixture but was unaffected by a 2-fold expansion of the aqueous phase, confirming that the photolabeling reaction took place in the lipid phase of the vesicle bilayer. The hydrophobic properties of the sodium channel subunits were examined further using phase separation in the nonionic detergent Triton X-114. Under conditions in which beta 1 is dissociated from alpha, the beta 1 subunit was preferentially extracted into the Triton X-114 phase, and the disulfide-linked alpha beta 2 complex was retained in the aqueous phase. When the disulfide bonds between the alpha and beta 2 subunits were reduced with dithioerythritol, the beta 2 subunit was also preferentially extracted into the Triton X-100 phase leaving the free alpha subunit in the aqueous phase. A preparative method for isolation of the beta 1 and beta 2 subunits was developed based on this technique. Considered together, the results of our hydrophobic labeling and phase separation experiments indicate that the alpha, beta 1, and beta 2 subunits all have substantial hydrophobic domains that may interact with the hydrocarbon phase of phospholipid bilayer membranes. Since the alpha subunit is known to be a transmembrane protein with many potential membrane-spanning segments, we conclude that the beta 1 and beta 2 subunits are likely to also be integral membrane proteins with one or more membrane-spanning segments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Interaction of glycosylated human myelin basic protein with lipid bilayers   总被引:1,自引:0,他引:1  
Myelin basic protein (MBP), isolated from normal human myelin, was glycosylated with UDP-N-acetyl-D-galactosamine and a glycosyltransferase isolated from porcine submaxillary glands. MBP containing 0.85 mol of N-acetyl-D-galactosamine per mole of protein was oxidized at carbon 6 by galactose oxidase and complexed with a spin-label, Tempoamine, in order to study its interactions with lipids. When the spin-labeled MBP was reacted with lipid vesicles consisting of DSPG, DPPG, and DMPG, most of the spin-label was motionally restricted in the gel phase, with a correlation time greater than 10(-8)s. The motion increased with increasing temperature and was sensitive to the lipid phase transition. Interaction with the gel phase of DPPA caused much less motional restriction of the probe. However, melting of the lipid allowed increased interaction and motional restriction of the probe, which was only partially reversed on cooling back to the gel phase. The motional restriction of the probe in these lipids is attributed to its penetration partway into the lipid bilayer in both the gel and liquid-crystalline phases. The fact that the probe bound to the protein can penetrate partway into the bilayer suggests that other hydrophobic side chains and residues of the protein can similarly penetrate into the bilayer. Additional evidence for penetration was provided by digestion of the lipid-bound protein with endoproteinase Lys-C. When nonglycosylated and glycosylated MBP in solution was treated with Lys-C, extensive digestion occurred. A single radioactive peptide which eluted at 25 min was identified as residues 92-105.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The basic protein of myelin binds electrostatically to acidic lipids but has several hydrophobic segments which may penetrate into the lipid bilayer. Calorimetric and spin-label evidence suggests that below the phase transition temperature, Tc, several phase states occur in the complex of phosphatidylglycerol with basic protein, possibly due to differences in the degree of penetration of the protein and/or interdigitation of the lipid acyl chains. One of these states is a metastable state which starts to melt 10 degrees C below the Tc of the pure lipid and then refreezes, with release of heat, into a stable state. The stable state melts near the Tc of the pure lipid but restricts the motion of fatty acid spin-labeled near the terminal methyl much more than does the pure lipid. The relationship between the rate of conversion to the stable state and the degree of penetration of the protein at varying pH, in the range 4--8, and the lipid acyl chain length, in the range 14 to 18 carbons, was investigated. Altering the pH in this range affects protonation of the histidines of the protein but has no effect on the lipid at pH 4 and above. The rate of conversion of the sample to both the metastable state and the stable state decreased with increase in pH for phosphatidylglycerol with all lipid chain lengths. It also decreased with decreasing chain length at constant pH. This suggested that the lipid could refreeze into the stable state more readily if a smaller proportion of the total bilayer thickness was occupied by the hydrophobic segments of the protein. The consistency of these results with the concept of penetration of portions of the protein partway into the bilayer lends support to this hypothesis.  相似文献   

15.
There are clusters of basic amino acids on many cytoplasmic proteins that bind transiently to membranes (e.g., protein kinase C) as well as on the cytoplasmic domain of many intrinsic membrane proteins (e.g., glycophorin). To explore the possibility that these basic residues bind electrostatically to monovalent acidic lipids, we studied the binding of the peptides Lysn and Argn (n = 1-5) to bilayer membranes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). We made electrophoretic mobility measurements using multilamellar vesicles, fluorescence and equilibrium binding measurements using large unilamellar vesicles, and surface potential measurements using monolayers. None of the peptides bound to vesicles formed from the zwitterionic lipid phosphatidylcholine (PC) but all bound to vesicles formed from PC/PS or PC/PG mixtures. None of the peptides exhibited specificity between PS and PG. Each lysine residue that was added to Lys2 decreased by one order of magnitude the concentration of peptide required to reverse the charge on the vesicle; equivalently it increased by one order of magnitude the binding affinity of the peptides for the PS vesicles. The simplest explanation is that each added lysine binds independently to a separate PS with a microscopic association constant of 10 M-1 or a free energy of approximately 1.4 kcal/mol. Similar, but not identical, results were obtained with the Argn peptides. A simple theoretical model combines the Gouy-Chapman theory (which accounts for the nonspecific electrostatic accumulation of the peptides in the aqueous diffuse double layer adjacent to the membrane) with mass action equations (which account for the binding of the peptides to greater than 1 PS). This model can account qualitatively for the dependence of binding on both the number of basic residues in the peptides and the mole fraction of PS in the membrane.  相似文献   

16.
J R Wiener  R Pal  Y Barenholz  R R Wagner 《Biochemistry》1985,24(26):7651-7658
In order to investigate the mode of interaction of peripheral membrane proteins with the lipid bilayer, the basic (pI approximately 9.1) matrix (M) protein of vesicular stomatitis virus was reconstituted with small unilamellar vesicles (SUV) containing phospholipids with acidic head groups. The lateral organization of lipids in such reconstituted membranes was probed by fluorescent phospholipid analogues labeled with pyrene fatty acids. The excimer/monomer (E/M) fluorescence intensity ratios of the intrinsic pyrene phospholipid probes were measured at various temperatures in M protein reconstituted SUV composed of 50 mol % each of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). The M protein showed relatively small effects on the E/M ratio either in the gel or in the liquid-crystalline phase. However, during the gel to liquid-crystalline phase transition, the M protein induced a large increase in the E/M ratio due to phase separation of lipids into a neutral DPPC-rich phase and DPPG domains presumably bound to M protein. Similar phase separation of bilayer lipids was also observed in the M protein reconstituted with mixed lipid vesicles containing one low-melting lipid component (1-palmitoyl-2-oleoylphosphatidylcholine or 1-palmitoyl-2-oleoylphosphatidylglycerol) or a low mole percent of cholesterol. The self-quenching of 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence, as a measure of lipid clustering in the bilayer, was also studied in M protein reconstituted DPPC-DPPG vesicles containing 5 mol % NBD-phosphatidylethanolamine (NBD-PE). The quenching of NBD-PE was enhanced at least 2-fold in M protein reconstituted vesicles at temperatures within or below the phase transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Amyloid β-protein (Aβ) has been reported to interact with a variety of lipid species, although the thermodynamic driving force remains unclear. We investigated the binding of Aβs labeled with the dye diethylaminocoumarin (DAC-Aβs) to lipid bilayers under various conditions. DAC-Aβ-(1-40) electrostatically bound to anionic and cationic lipids at acidic and alkaline interfacial pH, respectively. However, at neutral pH, electroneutral Aβ did not bind to these lipids, indicating little hydrophobic interaction between Aβ-(1-40) and the acyl chains of lipids. In contrast, DAC-Aβ associated with glycolipids even under electroneutral conditions. These results suggested that hydrogen-bonding as well as hydrophobic interactions with sugar groups of glycolipids drive the membrane binding of Aβ-(1-40).  相似文献   

18.
Surface-exposed regions of membrane-bound myelin basic protein--the major extrinsic membrane protein of central nervous system myelin--have been implicated as possible antigenic sites in diseased myelin. With the goal of determining the extent and nature of these regions, we have prepared basic protein modified with 13CH3-enriched acetyl groups at 7 of its 13 lysine residues. The resulting protein was placed in a membrane environment and studied by NMR spectroscopy to determine the location and rates of molecular motion of the labeled side chains with respect to lipid bilayers of the membrane. When 13C NMR spectra were obtained of the acetylated protein bound to multilamellar vesicles prepared from dimyristoylphosphatidic acid in the gel state (T = 33 degrees C), conditions under which reduced motion in the lipid bilayer broadens methylene and methyl 13C resonances of the membrane beyond detection (i.e. greater than 75-100 Hz), line widths of membrane-bound protein were measured to be 7.8 Hz, an increase of 4 Hz versus free protein. A reduction of 25-30% in integrated intensity observed in protein acetyl resonances upon membrane interaction was shown to be attributable to a population of protein-aggregated liposomes whose resonances were similarly too broad to be observed. Thus, the epsilon-acetyllysyl probes distributed throughout the protein do not penetrate the dimyristoylphosphatidic acid bilayer, but must reside in the interstitial aqueous spaces at or between membrane surfaces. These findings suggest an overall surface accessibility of membrane-bound myelin basic protein and are therefore incompatible with a model for the protein involving membrane-embedded loops or regions of functional significance.  相似文献   

19.
In aqueous solution bovine myelin basic protein has a close-to-random coil structure that is partially transformed to helix on interaction with lipids. Circular dichroism spectra have been used to follow this conformational transition which, with phospholipids, decreases in the order phosphatidylglycerol, phosphatidic acid approximately equal to phospholipids, decreases in the order phosphatidylethanolamine. There appears to be a strong correlation between the extent of alpha-helix formation and the degree of penetration of the hydrophobic region of the bilayer, as assessed by other methods. Cholesterol mixed in bilayers with phosphatidylserine has little effect on the protein secondary structure. Although basic protein binds strongly to cerebroside and to cerebroside sulphate, two of the other major myelin lipids, the intrinsic chirality of these lipids precludes assessment of their effect on the protein conformation. No significant changes in the circular dichroism spectra accompany the protein association with either of the zwitterionic bilayer-forming lipids, phosphatidylethanolamine and phosphatidylcholine. This seems to exclude extensive penetration into bilayers of these lipids and hence to exclude appreciable hydrophobic interactions; on the other hand, it is argued that little evidence exists for ionic attractions to these lipids. The optical activity of peptides derived from the basic protein by cleavage at the 42-43 and 88-89 peptides bonds (with cathepsin D) and at the 115-116 bond (with a skatole derivative) has also been measured in an attempt to locate the helix-forming regions within the primary structure.  相似文献   

20.
We measured directly the binding of Lys3, Lys5, and Lys7 to vesicles containing acidic phospholipids. When the vesicles contain 33% acidic lipids and the aqueous solution contains 100 mM monovalent salt, the standard Gibbs free energy for the binding of these peptides is 3, 5, and 7 kcal/mol, respectively. The binding energies decrease as the mol% of acidic lipids in the membrane decreases and/or as the salt concentration increases. Several lines of evidence suggest that these hydrophilic peptides do not penetrate the polar headgroup region of the membrane and that the binding is mainly due to electrostatic interactions. To calculate the binding energies from classical electrostatics, we applied the nonlinear Poisson-Boltzmann equation to atomic models of the phospholipid bilayers and the basic peptides in aqueous solution. The electrostatic free energy of interaction, which arises from both a long-range coulombic attraction between the positively charged peptide and the negatively charged lipid bilayer, and a short-range Born or image charge repulsion, is a minimum when approximately 2.5 A (i.e., one layer of water) exists between the van der Waals surfaces of the peptide and the lipid bilayer. The calculated molar association constants, K, agree well with the measured values: K is typically about 10-fold smaller than the experimental value (i.e., a difference of about 1.5 kcal/mol in the free energy of binding). The predicted dependence of K (or the binding free energies) on the ionic strength of the solution, the mol% of acidic lipids in the membrane, and the number of basic residues in the peptide agree very well with the experimental measurements. These calculations are relevant to the membrane binding of a number of important proteins that contain clusters of basic residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号