首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In vivo microdialysis was employed in order to characterize the steady-state kinetics of the turnover of specific dopamine and serotonin metabolites in the rat striatum 48 h after surgery. Inhibitors of monoamine oxidase (MAO; pargyline) and catechol-O-methyltransferase (COMT; Ro 40-7592) were administered, either separately or in conjunction, at doses sufficient to block these enzymes in the CNS. In some experiments, the acid metabolite carrier was blocked with probenecid. Temporal changes were then observed in the efflux of interstitial dopamine, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). The fractional rate constants for the accumulation or disappearance of the metabolites could be determined after pharmacological blockade of catabolic enzymes or the acid metabolite carrier. Interstitial 5-HIAA was found to be cleared with a half-life of approximately 2 h. After blockade of either MAO or COMT, HVA disappeared with a half-life of 17 min. Experiments employing probenecid suggested that some of the interstitial HVA was cleared by the acid metabolite carrier, the remainder being cleared by a probenecid-insensitive process, possibly conjugation. After MAO inhibition, DOPAC disappeared with an apparent half-life of 11.3 min. The rate of 3-MT accumulation after pargyline indicated that the majority of interstitial HVA (> 95%) is formed from DOPAC rather than 3-MT. The formation of 3-MT from interstitial dopamine, calculated from the accumulation rate of 3-MT after pargyline, appeared to follow first-order kinetics (k = 0.1 min-1).  相似文献   

2.
Isolated rat neurointermediate lobes were incubated in vitro. The release of 3,4-dihydroxyphenylethylamine (dopamine, DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and methoxyphenylethanol (MOPET) was determined by HPLC with electrochemical detection. Under resting conditions, the outflow of metabolites was 35-50 times that of DA. HVA accounted for 50%, DOPAC for 45%, and MOPET for 5% of the metabolites. Although an equivalent of 40-50% of the tissue DA content was released per hour as metabolites, the tissue DA content was not reduced after 110 min of incubation. The spontaneous outflow of DA and its metabolites was not affected by the DA uptake inhibitor GBR 12921 (100 nM). Pargyline (10 microM) caused a time-dependent decrease of all metabolites (up to 90%). In the presence of GBR 12921 and pargyline, the spontaneous outflow of DA increased sevenfold. Removal of the intermediate lobe caused a 78% reduction in tissue DA content and a corresponding reduction of the outflow of metabolites. Electrical stimulation of the pituitary stalk (0.2 ms, 10 V, 15 Hz, three times for 1 min at intervals of 1 min) induced an increase in outflow of DA and all metabolites. DA accounted for 15%, HVA for 41%, DOPAC for 32%, and MOPET for 12% of the evoked release. The electrically evoked release of DA increased fourfold in the presence of GBR 12921 or pargyline and the effects of both drugs were additive. The evoked release of metabolites was not significantly affected by GBR 12921 but completely abolished by pargyline. In conclusion, oxidative deamination and O-methylation are important pathways for the catabolism of DA in the neurointermediate lobe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Turnover of dopamine (DA), serotonin [5-hydroxytryptamine (5-HT)], and their metabolites has been measured in adult and aged rats. Turnover rates of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxy-3-indoleacetic acid (5-HIAA) have been assayed from the disappearance rates after blocking by pargyline inhibition of monoamine oxidase (MAO) and from the accumulation rates by probenecid inhibition of the probenecid-sensitive transport system. DA and 5-HT turnover rates have been measured as accumulation rates of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively, after central decarboxylase inhibition by 3-hydroxybenzylhydrazine (NSD-1015) and as accumulation rates of DA and 5-HT after pargyline inhibition of MAO. The DA turnover rate after NSD-1015 was 23.9% lower in aged rats than in adults, whereas after pargyline there was no significant difference between the two age groups. The HVA fractional rate constant and turnover after pargyline were lower in aged rats than in adults, and HVA turnover after probenecid was higher in aged rats than in adults. The DOPAC-HVA pathway seems to be reinforced at the expense of DOPAC conjugation. In aged and adult rats whose 5-HT steady-state levels were not statistically different, the 5-HT turnover rate after pargyline and NSD-1015 treatment was lower in aged rats than in adults. An increase of 5-HIAA levels after pargyline and probenecid treatment in aged rats could be due to the handling stress.  相似文献   

4.
A structure-potency study examining the ability of dopamine (DA), its major metabolites and related amine and acetate congeners to inhibit NADH-linked mitochondrial O(2) consumption was carried out to elucidate mechanisms by which DA could induce mitochondrial dysfunction. In the amine studies, DA was the most potent inhibitor of respiration (IC(50) 7.0 mm) compared with 3-methoxytryramine (3-MT, IC(50) 19.6 mm), 3,4-dimethoxyphenylethylamine (IC(50) 28.6 mm), tyramine (IC(50) 40.3 mm) and phenylethylamine (IC(50) 58.7 mm). Addition of monoamine oxidase (MAO) inhibitors afforded nearly complete protection against inhibition by phenylethylamine, tyramine and 3,4-dimethoxyphenylethylamine, indicating that inhibition arose from MAO-mediated pathways. In contrast, the inhibitory effects of DA and 3-MT were only partially prevented by MAO blockade, suggesting that inhibition might also arise from two-electron catechol oxidation and quinone formation by DA and one-electron oxidation of the 4-hydroxyphenyl group of 3-MT. In the phenylacetate studies, 3,4-dihydroxyphenylacetic acid (DOPAC) was equipotent with DA in inhibiting respiration (IC(50) 7.4 mm), further implicating the catechol reaction as the cause of inhibition. All other carboxylate congeners; phenylacetic acid (IC(50) 13.0 mm), 4-hydroxyphenylacetic acid (IC(50) 12.1 mm), 4-hydroxy-3-methoxyphenylacetic acid (HVA, IC(50) 12.0 mm) and 3,4-dimethoxyphenylacetic acid (IC(50) 10.2 mm), were equipotent respiratory inhibitors and two- to fourfold more potent than their corresponding amine. These latter findings suggest that the phenylacetate ion can also contribute independently to mitochondrial inhibition. In summary, mitochondrial respiration can be inhibited by DA and its metabolites by four distinct MAO-dependent and independent mechanisms.  相似文献   

5.
Measurements of the turnover of dopamine (DA) and DA metabolites have been performed in the striatum and substantia nigra (SN) of the rat. Turnover rates of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid have been assessed from the disappearance rates after blocking their formation by inhibition of monoamine oxidase by pargyline and of catechol-O-methyltransferase by tropolone. DA turnover has been measured as 3-methoxytyramine (3-MT) plus DA accumulation rate after MAO inhibition by pargyline and as accumulation rate of 3,4-dihydroxyphenylalanine (DOPA) after inhibition of aromatic amino acid decarboxylase by NSD 1015 or NSD 1034. These measures of DA turnover have been compared with alpha-methyl-p-tyrosine (alpha-MT)-induced DA disappearance rate. In SN all the different measures of DA turnover are in the same range (55-62 nmol/g protein/h) whereas in striatum DOPA accumulation rate after NSD 1015 and alpha-MT-induced DA disappearance rate (16-23 nmol/g/h) are much lower than DOPAC disappearance rate after pargyline, 3-MT plus DA accumulation rate after pargyline, and DOPA accumulation rate after NSD 1034 (39-46 nmol/g/h). The data confirm our previous findings indicating that the fractional turnover rate of DA is more rapid in SN than in striatum and that O-methylation of DA is relatively more important in SN. In striatum at least two pools of DA with different turnover rates appear to exist, whereas in SN, DA behaves as if located in a single compartment.  相似文献   

6.
Intracerebral dialysis was used to monitor the in vivo efflux of striatal dopamine (DA), homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC) and 3-methoxytyramine (3-MT) in the pentobarbital anesthetized rat. In untreated rats, there were low levels of extra-cellular DA and 3-MT which were increased 15-fold by treatment with amphetamine. Under basal and drug-stimulated conditions, 3-MT concentrations were maintained at approximately 30% of the extracellular DA levels. These data agree with in vivo turnover estimates which indicate that 20 to 30% of DA turnover is through the 3-MT pool in the striatum. In contrast, extracellular DOPAC and HVA levels were reduced only slightly by amphetamine and with a delayed onset. Our data support the hypothesis that striatal DOPAC is an accurate index of intraneuronal DA metabolism and that 3-MT is an index of the extracellular concentration of DA.  相似文献   

7.
The in vivo release of endogenous 3,4-dihydroxyphenylethylamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT), and of 5-hydroxytryptamine (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), has been measured in the caudate nucleus of the anesthetized rat. A push-pull cannula was implanted into the brain, and the tissue perfused with artificial CSF or artificial CSF containing 5×10–4 M phenylethylamine. The perfusate was collected and analyzed for DA, 5-HT and their metabolites by high performance liquid chromatography with electrochemical detection (HPLC-ECD). DA was released by phenylethylamine at rates significantly greater than its basal rate. 3-MT and 5-HT were undetectable in perfusates collected under basal conditions, but could be detected readlly during phenylethylamine stimulation. DOPAC, HVA and 5-HIAA concentrations were not significantly affected by phenylethylamine. The results suggest (1) that phenylethylamine may exert its behavioural effects through increased release of both DA and 5-HT, and (2) that in vivo measurements of the acid metabolites alone may not be indicative of the release of the amines.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

8.
The aim of this study is to determine the effects of intrastriatal administration of MnCl2, on the extracellular levels of dopamine (DA) and metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in basal conditions and stimulated by depolarization with KCl and pargyline administration. Also, we studied the effect of MnCl2 on extracellular levels of l-Dopa in the presence of aromatic amino acid decarboxylase (AADC) inhibitor 3-hydroxybencilhydracine-HCl (NSD 1015). This study concluded that MnCl2, reduced the basal and K+-stimulated DA-release in striatum, without notably affecting the DOPAC and HVA levels. Intraperitoneal injection of pargyline increased striatal DA levels, decreasing DOPAC and HVA levels. The infusion of MnCl2 removed the increase in DA levels, without affecting DOPAC and HVA levels. Perfusion of NSD 1015 increased the extracellular levels of l-DOPA in striatum, and MnCl2 increased the effect of NSD1015 on l-Dopa.  相似文献   

9.
A dialysis cannula was implanted into rat striatum while the animals were anesthetized, and the area was perfused with Ringer solution while the animals were unanesthetized after at least 3 days following surgery. Concentrations of the metabolites of 3,4-dihydroxyphenylethylamine (DA) and 5-hydroxytryptamine (5-HT) in the perfusate were determined by HPLC with electrochemical detection. Levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the perfusate significantly decreased after pargyline administration (50 mg/kg i.p.), which may inhibit not only monoamine oxidase (MAO)-B but also MAO-A in these high doses. The level of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) also decreased after pargyline treatment, although change in the relative level of 5-HIAA was less than that of DOPAC or HVA. To clarify the mechanisms for the metabolism of monoamines in rat striatum, highly specific MAO-A and -B inhibitors were used in the following experiments. Treatment with l-deprenyl (10 mg/kg), a specific inhibitor for MAO-B, did not cause any statistically significant change in DOPAC, HVA, and 5-HIAA levels. No significant change was found in rat striatal homogenates at 2 h after the same treatment with l-deprenyl. In contrast, low-dose treatment (1 mg/kg) with clorgyline, a specific inhibitor for MAO-A, caused a significant decrease in levels of these three metabolites in both the perfusates and tissue homogenates. In addition to the above three metabolites, the level of 3-methoxytyramine, which is an indicator of the amount of DA released, greatly increased after treatment with a low dose (1 mg/kg) of clorgyline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Conjugated Dopamine in Superfusates of Slices of Rat Striatum   总被引:3,自引:3,他引:0  
Abstract: An acid-hydrolyzable conjugate of 3,4-dihydroxyphenylethylamine (dopamine, DA) was detected in superfusates from slices from rat striatum. The concentrations of endogenous free and conjugated DA, and of the acid metabolites (3,4-dihydroxyphenylacetic acid [DOPAC] and homovanillic acid [HVA]) in superfusates were measured using HPLC with electrochemical detection. Conjugated DA in superfusates represented 10–20% of the free DA under basal conditions and during release evoked by p -tyramine (5 × 10−6 M to 5 × 10−4 M ); much smaller amounts of conjugated DA overflowed into superfusate when DA was released by equimolar concentrations of β-phenylethyl-amine. Surprisingly, inhibition of monoamine oxidase by the inhibitors N -methyl- N -propargyl-3-(2,4-dichlorophenoxy)propylamine hydrochlo-ride (clorgyline) or N -methyl- N -2-propynylbenylamine (pargyline) had little effect on the amounts of conjugated DA present in superfusate. Under basal conditions, the amounts of conjugated DA in superfusate were always less than the amounts of DOPAC but quite similar to the amounts of HVA. However, during release of DA evoked by p -tyramine the concentrations of conjugated DA in superfusate showed much more pronounced increases than those of the acidic metabolites.  相似文献   

11.
Intracerebral dialysis was used with a specifically designed HPLC with electrochemical detection assay to monitor extracellular levels of endogenous 3,4-dihydroxyphenylethylamine (dopamine, DA) and its major metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in brain regions of the halothane-anesthetized rat. Significant amounts of DA, DOPAC, and HVA were detected in control perfusates collected from striatum and n. accumbens whereas the medial prefrontal cortex showed lower monoamine levels. The ratio of DA in perfusate to DA in whole tissue suggests that in f. cortex, compared to n. accumbens and striatum, there is a greater amount of DA in the extracellular space relative to the intraneuronal DA content. The DOPAC/HVA ratio in control perfusates varied between regions in accordance with whole tissue measurements. This ratio was highest in n. accumbens and lowest in f. cortex. The monoamine oxidase inhibitor pargyline (100 mg/kg i.p.) caused an exponential decline in DOPAC, but not of HVA, in regional perfusates, an effect that was associated with an increase in DA. The data indicated a higher turnover of extracellular DOPAC in n. accumbens than in striatum and the lowest DOPAC turnover in f. cortex. The rate of decline in extracellular DA metabolite levels was slow compared to whole tissue measurements. In the perfusates there was no statistical correlation between basal amounts of DA in the perfusates and DOPAC and HVA levels or DOPAC turnover for any of the areas, indicating that measurement of DA metabolism in the brain under basal conditions does not provide a good index of DA release. In summary, this study shows clear regional differences in basal DA release and metabolite levels, metabolite patterns, and DOPAC turnover rates in rat brain in vivo.  相似文献   

12.
The influence of chlorpromazine, haloperidol, morphine, chloral hydrate, gamma-butyrolactone, probenecid, kainic acid, oxotremorine, pargyline, yohimbine, (+)-amphetamine, and cocaine on the efflux rate of 3,4-dihydroxyphenylacetic acid (DOPAC) from four brain areas was studied. All drugs studied except pargyline and morphine had an effect on the transport of DOPAC and homovanillic acid (HVA) from the brain. Nine drugs inhibited the efflux of DOPAC and HVA, whereas (+)-amphetamine stimulated this transport. These data suggest that most centrally acting drugs can interfere with the elimination of 3,4-dihydroxyphenylethylamine (DA or dopamine) metabolites from the brain. These effects are heterogeneously distributed throughout the brain and are probably related to indirect nonspecific drug effects. This implies that drug-induced changes in DA metabolite concentrations, especially when these changes are slight to moderate, cannot directly be translated to changes in the production rate of these metabolites. By studying five control groups, we concluded that formation and transport of DOPAC are not synchronized in the various brain areas.  相似文献   

13.
Striatal microdialysis was performed in rats subjected to 20 min of transient forebrain ischemia produced by occlusion of the carotid arteries during hemorrhagic hypotension. Extracellular changes of dopamine, serotonin, and their metabolites were monitored before, during, and after the ischemic insult at 10-min intervals by on-line HPLC analysis. During ischemia, extracellular dopamine increased dramatically (156 times baseline), as did 3-methoxytyramine (3-MT), whereas 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) decreased (15-25% of baseline). Upon reperfusion, dopamine was cleared from the extracellular fluid within 40 min and reached a stable level (70% of baseline). DOPAC and HVA increased (250-330%) transiently and reached their maximum 1 h following reperfusion, whereas 3-MT decreased to undetectable levels within 20 min. Although baseline levels of serotonin were not detectable, serotonin and 5-hydroxyindoleacetic acid showed a qualitatively similar temporal pattern to dopamine and its acid metabolites. Killing rats by cervical dislocation produced changes in extracellular dopamine, serotonin, and their metabolites that were almost identical to those seen during ischemia. Pargyline pretreatment 2 h before ischemia had marginal effects on the postischemic clearing of dopamine. The pargyline pretreatment, however, did increase the survival rate of rats subjected to ischemia, and this protective effect might be due to the pargyline-induced blockade of the post-ischemic monoamine oxidase-mediated increase in dopamine metabolism and the concurrent production of the potentially neurotoxic molecule, hydrogen peroxide.  相似文献   

14.
The effects of a number of biochemical and pharmacological manipulations on amphetamine (AMPH)-induced alterations in dopamine (DA) release and metabolism were examined in the rat striatum using the in vivo brain microdialysis method. Basal striatal dialysate concentrations were: DA, 7 nM; dihydroxyphenylacetic acid (DOPAC), 850 nM; homovanillic acid (HVA), 500 nM; 5-hydroxyindoleacetic acid (5-HIAA), 300 nM; and 3-methoxytyramine (3-MT), 3 nM. Intraperitoneal injection of AMPH (4 mg/kg) induced a substantial increase in DA efflux, which attained its maximum response 20-40 min after drug injection. On the other hand, DOPAC and HVA efflux declined following AMPH. The DA response, but not those of DOPAC and HVA, was dose dependent within the range of AMPH tested (2-16 mg/kg). High doses of AMPH (greater than 8 mg/kg) also decreased 5-HIAA and increased 3-MT efflux. Depletion of vesicular stores of DA using reserpine did not affect significantly AMPH-induced dopamine efflux. In contrast, prior inhibition of catecholamine synthesis, using alpha-methyl-p-tyrosine, proved to be an effective inhibitor of AMPH-evoked DA release (less than 35% of control). Moreover, the DA releasing action of AMPH was facilitated in pargyline-pretreated animals (220% of control). These data suggest that AMPH releases preferentially a newly synthesised pool of DA. Nomifensine, a DA uptake inhibitor, was an effective inhibitor of AMPH-induced DA efflux (18% of control). On the other hand, this action of AMPH was facilitated by veratrine and ouabain (200-210% of control). These results suggest that the membrane DA carrier may be involved in the actions of AMPH on DA efflux.  相似文献   

15.
Various postulated indices of central dopaminergic activity - cerebrospinal fluid (CSF) dopamine (DA), dihydroxy-phenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), plasma NA, serum prolactin, serum dopamine-β-hydroxylase (DBH), and platelet monoamine oxidase (MAO) activity - were measured in 30 drug-free inpatients. The mean values and the ranges were similar to those described in the literature. Plasma NA showed significant positive correlation with age. Significant positive correlation was found between CSF DA and its metabolites DOPAC and HVA. Serum DBH activity showed a slight but significant inverse correlation with CSF DA and its two metabolites. CSF NA showed a significant positive correlation with CSF DOPAC, but only in females. Serum DBH activity had no significant correlation either with CSF or with plasma NA levels. These findings suggest that either CSF HVA or DOPAC and DA may be useful indicators of DA metabolism in humans. Serum DBH activity may be in relationship with the central dopaminergic functions.  相似文献   

16.
At high doses quipazine, a serotonergic agonist, induces a dose-dependent reduction of homovanillic acid (HVA) and of dihydroxyphenylacetic acid (DOPAC) levels in rat striatum, and reduces the conversion of tyrosine into dopamine. These effects are not mediated by a serotonergic-dopaminergic interaction as they are not antagonized by pretreatment with the serotonin antagonist methergoline. Neither are they caused by direct action on dopamine receptors as the drug does not antagonize the increase in HVA induced by haloperidol. 3-methoxytyramine (3MT), a DA metabolite which is the expression of DA present in the synaptic cleft, is high after quipazine treatment, but this is not because of monoamine oxidase inhibition. The increase in 3MT is already evident shortly after quipazine administration, while the effect on HVA and DOPAC levels appears later. The different effects of quipazine on DA metabolites and the temporal sequence of their appearance suggest that the lowered levels of acidic metabolites are an index of reduced DA turnover secondary to the increase in DA at the receptor sites caused by quipazine.  相似文献   

17.
The relationship between phenolsulfotransferase (PST) and catechol-O-methyltransferase (COMT) in the metabolism of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain was studied. In rats not pretreated with a monoamine oxidase (MAO) inhibitor a huge increase of free DA in the brain, following an intraperitoneal injection of L-3,4-dihydroxyphenylalanine (L-DOPA) or an intraventricular injection of free DA, did not lead to any noticeable change in DA sulfate or 3-methoxytyramine (3-MT), which remained undetectable by the present HPLC method. However, in rats previously treated with the MAO inhibitors pargyline or tranylcypromine, the same L-DOPA or free DA treatment resulted in significant increases in both 3-MT and DA sulfate in the hypothalamus, brainstem, and striatum. This response of COMT and PST was not affected by prior treatment of the rats with 6-hydroxydopamine, which suggests that O-methylation and sulfoconjugation occur outside adrenergic neurons not destroyed by the neurotoxin. Inhibition of COMT activity did not lead to any increase in DA sulfate, which showed that despite their common mode of action (both enzymes react preferentially at the same hydroxyl group in the DA molecule), the two enzymes are not competitive. After MAO inhibition there were strong correlations between an increase in DA sulfate and 3-MT on the one hand, and between free DA and 3-MT on the other. Because 3-MT is a marker of central DA release, these data suggest that inhibition of MAO activity not only affects DA metabolism by this enzyme but also influences DA release in the rat brain.  相似文献   

18.
The effects of 1-methyl-4-phenyl - 1,2,3,6-tetrahydropyridine (MPTP) on immune parameters, and the restorative influence of sodium diethyldithiocarbamate (DTC) or deprenyl were evaluated in mice. The concentrations of dopamine (DA), 3-methoxytyramine (3-MT), 3-4-dihydroxyphenyl acetic acid (DOPAC), and homovanillic acid (HVA), were concomitantly measured in the striatum. MPTP depressed T-cell responses. DTC restored these responses as well as the concentration of striatal DA. Deprenyl had no effect on the concentrations of DA and its metabolites, yet it modified the immune responses alike MPTP. The findings suggest a dopamine pathway could be involved in the brain-controlled immunostimulation afforded by DTC.  相似文献   

19.
Abstract: Changes in the tissue levels of 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and dopamine in the frontal cortex, hypothalamus, nucleus accumbens, and striatum were evaluated after 0.5-4 h of footshock (2 mA, for 3 s every 30 ± 5 s) in Fischer rats. 3-MT, DOPAC, and HVA levels in the four brain areas peaked at 0.5 h and in most cases returned to baseline values within 4 h. No changes were found in dopamine levels. Repeated footshock stress was evaluated by administering 10 footshock sessions (0.5 h, two per day for 5 days). At the end of the 10th footshock session, 3-MT levels were higher than at the end of the first footshock session in three of the four brain regions, indicating sensitization of dopamine release. No differences were found between the first and 10th footshock sessions in DOPAC and HVA levels. Fourteen days after the 10th footshock session, the levels of 3-MT, DOPAC, and HVA were the same as in control rats in all four brain regions. A 0.5-h footshock challenge presented 14 days after the 10th footshock session attenuated DOPAC levels in the hypothalamus and nucleus accumbens. In contrast, DOPAC and HVA levels in the frontal cortex showed sensitization after footshock challenge, and a similar trend was apparent for 3-MT levels. These results indicate that repeated footshock stress induces generalized sensitization of dopamine release and turnover in some areas of the brain of Fischer rats. This sensitization may persist in the cortical but not subcortical dopamine neurons after discontinuation of the treatment.  相似文献   

20.
Alterations in neostriatal dopamine metabolism, release, and biosynthesis were determined 3, 5, or 18 days following partial, unilateral destruction of the rat nigrostriatal dopamine projection. Concentrations of dopamine and each of its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine (3-MT) were markedly decreased in the lesioned striata at 3, 5, or 18 days postoperation. The decline in striatal high-affinity [3H]dopamine uptake closely matched the depletion of dopamine at 3 and 18 days postoperation. However, neither DOPAC, HVA, nor 3-MT concentrations were decreased to as great an extent as dopamine at any time following lesions that depleted the dopamine innervation of the striatum by greater than 80%. In these more severely lesioned animals, dopamine metabolism, estimated from the ratio of DOPAC or HVA to dopamine, was increased two- to four-fold in the injured hemisphere compared with the intact hemisphere. Dopamine release, estimated by the ratio of 3-MT to dopamine, was more increased, by five- to sixfold. Importantly, the HVA/dopamine, DOPAC/dopamine, and 3-MT/dopamine ratios did not differ between 3 and 18 days postlesioning. The rate of in vivo dopamine biosynthesis, as estimated by striatal DOPA accumulation following 3,4-dihydroxyphenylalanine (DOPA) decarboxylase inhibition with NSD 1015, was increased by 2.6- to 2.7-fold in the surviving dopamine terminals but again equally at 3 and 18 days postoperation. Thus, maximal increases in dopamine metabolism, release, and biosynthesis occur rapidly within neostriatal terminals that survive a lesion. This mobilization of dopaminergic function could contribute to the recovery from the behavioral deficits of partial denervation by increasing the availability of dopamine to neostriatal dopamine receptors. However, these presynaptic compensations are not sufficient to account for the protracted (at least 3-week) time course of sensorimotor recovery that has been observed following partial nigrostriatal lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号