首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: 3-Methoxytyramine (3-MT) and 3,4-dihydroxyphenylacetic acid (DOPAC) rates of formation were used, respectively, to assess the dynamics of dopamine (DA) release and turnover in the rat frontal cortex, nucleus accumbens, and striatum. Assuming total (re)uptake and metabolism of released DA are relatively uniform among the three brain regions, a simplified two pool model was used to assess the metabolic fate of released DA. Under basal conditions, 3-MT formation was found to comprise >60% of total DA turnover (sum of 3-MT plus DOPAC rates of formation) in the frontal cortex, and not more than 15% in the nucleus accumbens and striatum. Haloperidol increased the 3-MT rate of formation to a greater extent in the frontal cortex than in the two other regions. Clozapine increased the 3-MT rate of formation in the frontal cortex and decreased it in the striatum. Both drugs increased DOPAC rate of formation in the frontal cortex and nucleus accumbens. It was elevated by haloperidol but not clozapine in the striatum. It is concluded that (1) O -methylation is a prominent step in the catabolism of DA in the frontal cortex under both physiological conditions and after acute treatment with antipsychotics, (2) 3-MT is the major metabolite of released DA in the frontal cortex and possibly also in the nucleus accumbens and striatum, (3) in contrast to the frontal cortex, most of the DOPAC in the nucleus accumbens and striatum appear to originate from intraneuronal deamination of DA that has not been released, (4) because presynaptic uptake and metabolism of DA give rise to DOPAC, whereas postsynaptic uptake and metabolism produced both DOPAC and 3-MT, the ratio of 3-MT to DOPAC rates of formation can be a useful index of reuptake inhibition.  相似文献   

2.
Neurotensin (NT) injected intracerebroventricularly in rat increases dopamine (DA) turnover in the corpus striatum and nucleus accumbens. Significant increases in 3,4-dihydroxyphenylacetic acid (DOPAC) levels occurred within 15 minutes after injection with peak levels at 60 minutes. The effect on NT on DOPAC and homovanillic acid (HVA) accumulation was dose-dependent at 3–100 μg. NT, like haloperidol, stimulated 3,4-dihydroxyphenylalanine (DOPA) accumulation in striatal neurons, in the presence of DOPA decarboxylase inhibitor, after injection of gamma-butyrolactone (GBL). NT had a similar stimulatory effect on DOPA levels in the accumbens while haloperidol (0.25 mg·kg?1) had no significant effect in this brain region. NT did not block the inhibitory effect of apomorphine on DOPA accumulation in both the striatum and accumbens, while haloperidol inhibited apomorphine effect in both regions. NT also failed to displace 3H-spiperone from DA receptors and the presence of NT in the binding assay did not alter the ability of DA to displace 3H-spiperone in either brain region. These experiments demonstrate that NT increases DA turnover in both the nigrostriatal and mesolimbic pathways.  相似文献   

3.
The rate of removal of 3,4-dihydroxyphenylacetic acid (DOPAC) in nine rat brain areas (striatum, nucleus accumbens, tuberculum olfactorium, hypothalamus, lateral hippocampus, occipital cortex, brain stem, cerebellum, and retina) was calculated from its exponential decline after monoamine oxidase inhibition by pargyline. The experiments were carried out with rats pretreated with either saline or haloperidol. It appeared that the efficiency with which DOPAC was removed from the brain (expressed by the fractional rate constant k) varied considerably throughout the brain. Haloperidol dramatically decreased the k values, and in addition these effects differed widely in the various brain areas. Similarly to DOPAC, haloperidol had a pronounced retarding effect on the efflux of homovanillic acid (HVA) from the brain. These findings strongly suggest that great care should be taken when drug-induced alterations in DOPAC and HVA concentrations are interpreted as changes in dopaminergic activity. The dopamine (DA) concentrations were measured in the same experiments, but it appeared that the pargyline-induced rise in DA was of limited use for the estimation of the synthesis rate of the amine. We calculated the rate of catecholamine synthesis in the nine brain areas from the rise of 3,4-dihydroxyphenylalanine (DOPA) during decarboxylase inhibition. In saline- as well as in haloperidol-pretreated rats it was found that the total catecholamine synthesis rate in the typical dopaminergic areas (striatum, nucleus accumbens, and tuberculum olfactorium) was of the same order of magnitude as the DOPAC rate of removal. This confirms that DOPAC formation is quantitatively the main route of degradation in these brain areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Abstract: By using a new technique, intracerebral dialysis, in combination with high performance liquid chromatography and electrochemical detection, it was possible to recover and measure endogenous extracellular dopamine, together with its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) from the striatum and nucleus accumbens of anaesthetized or freely moving rats. In addition, measurements of extracellular 5-hydroxyindoleacetic acid, ascorbic acid, and uric acid were made. Basal extracellular concentrations of dopamine and DOPAC in the striatum were estimated to be 5 × 10−8 M and 5 × 10−6 M , respectively. d -Amphetamine (2 mg/kg s.c.) increased dopamine levels in the striatum perfusates by 14-fold, whereas levels of DOPAC and HVA decreased by 77% and 66%, respectively.  相似文献   

5.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

6.
Effects of acute and subacute cocaine administration on dopamine (DA) and its metabolites in striata and nucleus accumbens of nine week-old Wistar-Kyoto and spontaneously hypertensive rats were studied. Levels of DA,3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. There were no differences in DA levels in striata and nucleus accumbens between control WKY and SHR. Levels of DA in two brain regions were unaffected in groups treated acutely with cocaine. Both strains showed a significant increase in striatal HVA 2 hr after cocaine injection. Seven day treatment declined DA levels in striatum of WKY and in nucleus accumbens of SHR. However, only WKY treated subacutely with cocaine showed significantly increased HVA either with or without changes in DOPAC in nucleus accumbens and striatum, respectively. Increased DOPAC/DA and HVA/DA ratios appeared only in striatum of WKY and in nucleus accumbens of SHR following subacute treatment. These results suggest that subacute cocaine administration affects DA levels in striata and nucleus accumbens differently between WKY and SHR.  相似文献   

7.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

8.
Intracerebral dialysis was used to monitor the in vivo efflux of striatal dopamine (DA), homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC) and 3-methoxytyramine (3-MT) in the pentobarbital anesthetized rat. In untreated rats, there were low levels of extra-cellular DA and 3-MT which were increased 15-fold by treatment with amphetamine. Under basal and drug-stimulated conditions, 3-MT concentrations were maintained at approximately 30% of the extracellular DA levels. These data agree with in vivo turnover estimates which indicate that 20 to 30% of DA turnover is through the 3-MT pool in the striatum. In contrast, extracellular DOPAC and HVA levels were reduced only slightly by amphetamine and with a delayed onset. Our data support the hypothesis that striatal DOPAC is an accurate index of intraneuronal DA metabolism and that 3-MT is an index of the extracellular concentration of DA.  相似文献   

9.
The aim of this study is to determine the effects of intrastriatal administration of MnCl2, on the extracellular levels of dopamine (DA) and metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in basal conditions and stimulated by depolarization with KCl and pargyline administration. Also, we studied the effect of MnCl2 on extracellular levels of l-Dopa in the presence of aromatic amino acid decarboxylase (AADC) inhibitor 3-hydroxybencilhydracine-HCl (NSD 1015). This study concluded that MnCl2, reduced the basal and K+-stimulated DA-release in striatum, without notably affecting the DOPAC and HVA levels. Intraperitoneal injection of pargyline increased striatal DA levels, decreasing DOPAC and HVA levels. The infusion of MnCl2 removed the increase in DA levels, without affecting DOPAC and HVA levels. Perfusion of NSD 1015 increased the extracellular levels of l-DOPA in striatum, and MnCl2 increased the effect of NSD1015 on l-Dopa.  相似文献   

10.
The concentrations of catecholamine and indoleamine metabolites were measured in intact and adrenalectomized mice to determine whether adrenal hormones mediate or modulate the stress-induced responses. Thirty minutes of footshock resulted in significant increases of the ratios of the dopamine (DA) catabolite, dihydroxyphenylacetic acid (DOPAC), to DA in prefrontal cortex, nucleus accumbens, striatum, hypothalamus, and brainstem, and of homovanillic (HVA)/DA ratios in nucleus accumbens, striatum, amygdala, and hypothalamus. Ratios of 3-methoxy-4-hydroxyphenylethyleneglycol to norepinephrine (NE) were also increased in prefrontal cortex, nucleus accumbens, septum, amygdala, hypothalamus, hippocampus, and brainstem. The concentration of NE was decreased in amygdala. 5-Hydroxyindoleacetic acid (5-HIAA)/5-hydroxytryptamine (5-HT, serotonin) ratios and free tryptophan were also increased in every brain region. Very similar data were obtained from mice restrained for 30 min. Adrenalectomy resulted in increased HVA/DA ratios in prefrontal cortex and striatum, and 5-HIAA/5-HT in septum. The stress-related changes were largely similar in adrenalectomized mice. Significant interactions between adrenalectomy and footshock treatment occurred in prefrontal cortical DOPAC/DA and hypothalamic NE which was depleted only in adrenalectomized mice, suggesting tendencies for these measures to be more responsive in adrenalectomized mice. Corticosterone administration (0.5-2.0 mg/kg s.c.) which resulted in plasma concentrations in the physiological range did not alter the concentrations of the cerebral metabolites measured in any region. We conclude that adrenal hormones do not mediate cerebral catecholamine or indoleamine metabolism in stress, although adrenalectomy may affect HVA and 5-HIAA metabolism, and there was a tendency for catecholamines to be more sensitive to stress in adrenalectomized animals.  相似文献   

11.
The effect of electrical foot shock stress on dopamine and DOPAC levels was examined in the frontal cortex, nucleus accumbens, striatum, substantia nigra and medial basal hypothalamus of rats. DA content did not change after stress in any of the structures analyzed except in the substantia nigra in which DA level decreased by about 35% following 20, 60 or 180 min of stress. DOPAC level did not change in the striatum, medial basal hypothalamus and substantia nigra, but increased in the frontal cortex and in n. accumbens by about 75% and 40%, respectively. Pretreatment with diazepam, but not with pentobarbital, prevented stress-induced increased in DOPAC levels.  相似文献   

12.
Haloperidol-induced dopamine (DA) release and metabolism were studied in the rat striatum at 10-11, 21-22, and 35-36 days of age using intracerebral dialysis and HPLC with electrochemical detection. There was an age-related increase in basal DA release and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), with the greatest increases occurring between 10-11 and 21-22 days of age. Haloperidol (0.1 mg/kg, i.p.) significantly increased DA release at each age compared to control. Also, haloperidol produced a significantly greater increase in DA release at 10-11 days than at 21-22 or 35-36 days of age when expressed as percentage of predrug release. Haloperidol increased DA release over 60 min to 235%, 138%, and 158% above baseline at 10-11, 21-22, and 35-36 days of age, respectively, after which time the levels remained relatively constant. Haloperidol significantly increased extracellular DOPAC and HVA levels at each age compared to controls, but there were no significant differences in DOPAC or HVA levels between ages in response to haloperidol. The results indicate that, at 10 days of age, DA release in the striatum is physiologically functional and that the regulatory feedback control of DA release and metabolism in the striatum develops prior to 10 days of age.  相似文献   

13.
Abstract: Changes in the tissue levels of 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and dopamine in the frontal cortex, hypothalamus, nucleus accumbens, and striatum were evaluated after 0.5-4 h of footshock (2 mA, for 3 s every 30 ± 5 s) in Fischer rats. 3-MT, DOPAC, and HVA levels in the four brain areas peaked at 0.5 h and in most cases returned to baseline values within 4 h. No changes were found in dopamine levels. Repeated footshock stress was evaluated by administering 10 footshock sessions (0.5 h, two per day for 5 days). At the end of the 10th footshock session, 3-MT levels were higher than at the end of the first footshock session in three of the four brain regions, indicating sensitization of dopamine release. No differences were found between the first and 10th footshock sessions in DOPAC and HVA levels. Fourteen days after the 10th footshock session, the levels of 3-MT, DOPAC, and HVA were the same as in control rats in all four brain regions. A 0.5-h footshock challenge presented 14 days after the 10th footshock session attenuated DOPAC levels in the hypothalamus and nucleus accumbens. In contrast, DOPAC and HVA levels in the frontal cortex showed sensitization after footshock challenge, and a similar trend was apparent for 3-MT levels. These results indicate that repeated footshock stress induces generalized sensitization of dopamine release and turnover in some areas of the brain of Fischer rats. This sensitization may persist in the cortical but not subcortical dopamine neurons after discontinuation of the treatment.  相似文献   

14.
Acute and chronic effects of γ-butyrolactone-γ-carbonyl-histidyl-prolinamide (DN-1417) were investigated on motor activity, dopamine (DA) metabolites and DA receptors in various brain regions of rats. The motor activity, as measured with Automex recorder, was enhanced after a single injection with DN-1417 (20 mg/kg, IP), and the motor stimulating action persisted during 21 daily injections. Acute DN-1417 elevated both homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in 7 brain regions, prefrontal cortex polar, medial and lateral fields, nucleus accumbens, olfactory tubercles, amygdala and striatum. After chronic treatment for 7 days, the acute effect of DN-1417 on DA metabolites disappeared in all regions except for the striatum in which DN-1417 still increased HVA and DOPAC. The response of striatal DA metabolites was also observed after chronic treatment for 21 days. Chronic DN-1417 produced no significant change in 3H-spiperone binding in the prefrontal cortex, nucleus accumbens, olfactory tubercles and striatum, while striatal 3H-DA binding displaced by 30 nM spiperone was enhanced after chronic treatment. These results indicate that DN-1417 interacts with mesocortical, mesolimbic and nigrostriatal DA systems in the different modes of action. The lack of tolerance to motor hyperactivity, however, raises the question as to whether DN-1417-induced hyperactivity may be mediated by the activation of mesolimbic DA neurons. The involvement of nigrostriatal neurons in DN-1417-induced motor hyperactivity is suggested.  相似文献   

15.
The in vivo release of endogenous 3,4-dihydroxyphenylethylamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT), and of 5-hydroxytryptamine (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), has been measured in the caudate nucleus of the anesthetized rat. A push-pull cannula was implanted into the brain, and the tissue perfused with artificial CSF or artificial CSF containing 5×10–4 M phenylethylamine. The perfusate was collected and analyzed for DA, 5-HT and their metabolites by high performance liquid chromatography with electrochemical detection (HPLC-ECD). DA was released by phenylethylamine at rates significantly greater than its basal rate. 3-MT and 5-HT were undetectable in perfusates collected under basal conditions, but could be detected readlly during phenylethylamine stimulation. DOPAC, HVA and 5-HIAA concentrations were not significantly affected by phenylethylamine. The results suggest (1) that phenylethylamine may exert its behavioural effects through increased release of both DA and 5-HT, and (2) that in vivo measurements of the acid metabolites alone may not be indicative of the release of the amines.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

16.
The effects of apomorphine (0.1-2.5 mg/kg) on release of endogenous dopamine and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex and the striatum were examined in vivo by a microdialysis method. Apomorphine significantly reduced release of dopamine and the extracellular levels of dopamine metabolites, DOPAC and HVA, not only in the striatum, but also in the prefrontal cortex. These findings indicate that dopamine autoreceptors modulate in vivo release of dopamine in the prefrontal cortex.  相似文献   

17.
J C Fernando  B Hoskins  I K Ho 《Life sciences》1986,39(23):2169-2176
The role of brain dopamine (DA) in the enhancement of muscarinic antagonist-induced hyperactivity was investigated. The effects of atropine and scopolamine on the concentrations of DA and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), following DFP administration were determined. In control animals, atropine and scopolamine decreased the concentration of DA and increased the ratios of DOPAC/DA and HVA/DA in the striatum, but not in the N. accumbens - T. olfactorium (mesolimbic) area. Following a single dose of DFP, the two antimuscarinic drugs caused decreases of DA and further increases of the above ratios in both brain regions. However, following repeated DFP treatment for 2 weeks, these antimuscarinic drug-induced changes were observed only in the mesolimbic area, but not in the striatum. It is suggested that an increased DA turnover, indicated by elevated DOPAC/DA and HVA/DA ratios, underlies the muscarinic antagonist-induced hyperactivity. The well-known occurrence of muscarinic receptor down-regulation after DFP administration, could be responsible for the enhancement of the actions of muscarinic antagonists in DFP-treated animals. The observed differential effect on DA turnover in the two broad areas may involve both muscarinic and DA receptors.  相似文献   

18.
左旋千金藤啶碱对不同脑区DA更新率的影响   总被引:1,自引:0,他引:1  
贺毓芳  黄开星 《生理学报》1995,47(5):429-434
应用HPLC-ECD测定DA更新率(DOPAC/DA),证明(-)SPD对黑质-纹状体、中脑-边缘系统、下丘脑-垂体DA神经系统的DA含量影响不明显,却显著增加DOPAC含量,并显著加强这些脑区的DA更新率,这可能是通过末梢的DA自身受体实现的。但(-)SPD既不显著影响中脑-前额叶和中脑-扣带回的DA含量,也不影响其中DOPAC含量,表明它不影响这些脑区DA更新率。这可能是由于皮层DA系统神经末  相似文献   

19.
The concentrations of the acidic dopamine (DA) catabolites homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) measured in human CSF are supposed to reflect the "turnover" of DA in the brain. The notion of "turnover" is, however, not synonymous with impulse nerve activity in the dopaminergic systems. Significant amounts of DOPAC and HVA could, indeed, be demonstrated in brain structures wherein dopaminergic innervation has not been documented. It must also be noted that DA is not only a neurotransmitter itself, but also a precursor of norepinephrine and epinephrine. Furthermore, in lumbar CSF, levels of biogenic amine catabolites partially reflect metabolism in the spinal cord and may have limited relevance to neurotransmission in the brain. To elucidate these points further, we determined the concentrations of DOPAC and HVA in 22 areas of six human brains and eight levels of six human spinal cords. The data were correlated with the concentration of DA. Quantitative determinations were done using HPLC with electrochemical detection, after solvent and ion-pair extraction. In this study, significant amounts of both DOPAC and HVA were demonstrated in brain structures not previously associated with dopaminergic innervation. The relatively lower DA concentration in these structures suggests that in these regions, the DOPAC and HVA concentrations are unrelated to dopaminergic neurotransmission. The possible role of capillary walls and glial cells in the catabolism of DA must be further evaluated. The demonstration of DOPAC and HVA in the spinal cord is another argument against the hypothesis that CSF levels of HVA and DOPAC reflect closely the activity of the dopaminergic systems in the brain.  相似文献   

20.
The influence of central substance P (SP) administration on alcohol intake and brain dopamine metabolism within mesocortico-limbic and nigrostiatal systems of rats exposed to ethanol, was studied. During 6 months, the rats consumed 15% ethanol solution instead of water. Central administration of SP (3 mcg/kg) decreased alcohol consumption by 41% in alcohol-preference animals. After long-term ethanol exposure ratios DOPAC/DA and HVA/DA were reduced in striatum and accumbens. SP in dose 3 mcg/kg increased content of DOPAC by 17% and HVA by 23% as well as DOPAC/DA by 9%, HVA/DA by 19% in accumbens. Whereas in striatum only increased DOPAC (28%) and HVA (29%) were observed as compared with saline-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号