首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we examined Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to metal cations. The minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) required to eradicate 100% of the planktonic population (MBC 100), and the minimum biofilm eradication concentration (MBEC) were determined using the MBEC trade mark-high throughput assay. Six metals - Co(2+), Ni(2+), Cu(2+), Zn(2+), Al(3+) and Pb(2+)- were each tested at 2, 4, 6, 8, 10 and 27 h of exposure to biofilm and planktonic cultures grown in rich or minimal media. With 2 or 4 h of exposure, biofilms were approximately 2-25 times more tolerant to killing by metal cations than the corresponding planktonic cultures. However, by 27 h of exposure, biofilm and planktonic bacteria were eradicated at approximately the same concentration in every instance. Viable cell counts evaluated at 2 and 27 h of exposure revealed that at high concentrations, most of the metals assayed had killed greater than 99.9% of biofilm and planktonic cell populations. The surviving cells were propogated in vitro and gave rise to biofilm and planktonic cultures with normal sensitivity to metals. Further, retention of copper by the biofilm matrix was investigated using the chelator sodium diethlydithiocarbamate. Formation of visible brown metal-chelates in biofilms treated with Cu(2+) suggests that the biofilm matrix may coordinate and sequester metal cations from the aqueous surroundings. Overall, our data suggest that both metal sequestration in the biofilm matrix and the presence of a small population of 'persister' cells may be contributing factors in the time-dependent tolerance of both planktonic cells and biofilms to high concentrations of metal cations.  相似文献   

2.
A study was undertaken to examine the effects of the heavy metals copper, lead, and zinc on biofilm and planktonic Pseudomonas aeruginosa. A rotating-disk biofilm reactor was used to generate biofilm and free-swimming cultures to test their relative levels of resistance to heavy metals. It was determined that biofilms were anywhere from 2 to 600 times more resistant to heavy metal stress than free-swimming cells. When planktonic cells at different stages of growth were examined, it was found that logarithmically growing cells were more resistant to copper and lead stress than stationary-phase cells. However, biofilms were observed to be more resistant to heavy metals than either stationary-phase or logarithmically growing planktonic cells. Microscopy was used to evaluate the effect of copper stress on a mature P. aeruginosa biofilm. The exterior of the biofilm was preferentially killed after exposure to elevated concentrations of copper, and the majority of living cells were near the substratum. A potential explanation for this is that the extracellular polymeric substances that encase a biofilm may be responsible for protecting cells from heavy metal stress by binding the heavy metals and retarding their diffusion within the biofilm.  相似文献   

3.
A study was undertaken to examine the effects of the heavy metals copper, lead, and zinc on biofilm and planktonic Pseudomonas aeruginosa. A rotating-disk biofilm reactor was used to generate biofilm and free-swimming cultures to test their relative levels of resistance to heavy metals. It was determined that biofilms were anywhere from 2 to 600 times more resistant to heavy metal stress than free-swimming cells. When planktonic cells at different stages of growth were examined, it was found that logarithmically growing cells were more resistant to copper and lead stress than stationary-phase cells. However, biofilms were observed to be more resistant to heavy metals than either stationary-phase or logarithmically growing planktonic cells. Microscopy was used to evaluate the effect of copper stress on a mature P. aeruginosa biofilm. The exterior of the biofilm was preferentially killed after exposure to elevated concentrations of copper, and the majority of living cells were near the substratum. A potential explanation for this is that the extracellular polymeric substances that encase a biofilm may be responsible for protecting cells from heavy metal stress by binding the heavy metals and retarding their diffusion within the biofilm.  相似文献   

4.
Candida albicans and Candida tropicalis are polymorphic fungi that develop antimicrobial-resistant biofilm communities that are characterized by multiple cell morphotypes. This study investigated cell type interconversion and drug and metal resistance as well as community organization in biofilms of these microorganisms that were exposed to metal ions. To study this, Candida biofilms were grown either in microtiter plates containing gradient arrays of metal ions or in the Calgary Biofilm Device for high-throughput susceptibility testing. Biofilm formation and antifungal resistance were evaluated by viable cell counts, tetrazolium salt reduction, light microscopy, and confocal laser scanning microscopy in conjunction with three-dimensional visualization. We discovered that subinhibitory concentrations of certain metal ions (CrO(4)(2-), Co(2+), Cu(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), AsO(2)(-), and SeO(3)(2-)) caused changes in biofilm structure by blocking or eliciting the transition between yeast and hyphal cell types. Four distinct biofilm community structure types were discerned from these data, which were designated "domed," "layer cake," "flat," and "mycelial." This study suggests that Candida biofilm populations may respond to metal ions to form cell-cell and solid-surface-attached assemblages with distinct patterns of cellular differentiation.  相似文献   

5.
Candida albicans is a common, opportunistic, human fungal pathogen that causes a variety of mucosal and systemic afflictions. It exists in nature both in the biofilm or the sessile phase, as well as in the free-floating or the planktonic phase. Candida biofilms, in particular, display unique characteristics that confer survival advantages over their planktonic counterparts, such as their recalcitrance to common antifungals. The mechanisms underlying Candida biofilm formation and their attributes are poorly understood. In this study, we used a 2-DE-based approach to characterize the protein markers that are differentially expressed in Candida biofilms in comparison to their planktonic counterparts. Using tandem mass spectrometric analysis, we have identified a significant number of proteins including alkyl hydroperoxide reductase, thioredoxin peroxidase, and thioredoxin involved in oxidative stress defenses that are upregulated in the biofilm phase. These proteomic findings were further confirmed by real-time PCR and lucigenin-based chemiluminescence assays. In addition, we demonstrate that a drug target for the new antifungal agent echinocandin, is abundantly expressed and significantly upregulated in Candida biofilms. Taken together, these data imply that the biofilm mode, Candida, compared with their planktonic counterparts, exhibits traits that can sustain oxidative stress (anti-oxidants), and thereby exert resistance to commonly used antifungals.  相似文献   

6.
7.

Heavy metal tolerance of two marine strains of Yarrowia lipolytica was tested on solid yeast extract peptone dextrose agar plates. Based on minimum inhibitory concentration esteems, it is inferred that the two strains of Y. lipolytica were tolerant to heavy metals such as Pb(II), Cr(III), Zn(II), Cu(II), As(V), and Ni(II) ions. The impact of various heavy metal concentrations on the growth kinetics of Y. lipolytica was likewise assessed. With increased heavy metal concentration, the specific growth rate was reduced with delayed doubling time. Furthermore, biofilm development of both yeasts on the glass surfaces and in microtitre plates was assessed in presence of different heavy metals. In microtitre plates, a short lag phase of biofilm formation was noticed without the addition of heavy metals in yeast nitrogen base liquid media. A lag phase was extended over increasing metal concentrations of media. Heavy metals like Cr(VI), Cd(II), and As(V) are contrastingly influenced on biofilms’ formation of microtitre plates. Other heavy metals did not much influence on biofilms development. Thus, biofilm formation is a strategy of Y. lipolytica under stress of heavy metals has significance in bioremediation process for recovery of heavy metals from contaminated environment.

  相似文献   

8.
Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal–sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.  相似文献   

9.
The ability to form biofilm on different surfaces is typical of most Candida species. Microscopic structure and genetic aspects of fungal biofilms have been the object of many studies because of very high resistance to antimycotic agents because of the scarce permeability of the external matrix and to the alterations in cell metabolism. In our study, 31 isolates of Candida parapsilosis, isolated from bloodstream infections, were tested for their ability to produce biofilm and were found to be good producers. The susceptibility to voriconazole, assayed by colorimetrical XTT assay, revealed a very elevated minimum inhibitory concentrations for sessile cells in comparison with planktonic ones. The addition of ambroxol, a mucolytic agent, increased the susceptibility of biofilm forming cells to voriconazole. Expression of the efflux pump genes CDR and MDR was analyzed in biofilms alone or treated with ambroxol, evidencing a role of ambroxol in the expression of genes involved in azole resistance mechanisms of C.?parapsilosis biofilms. In conclusion, our data seem to encourage the use of different substances in combination with classical antimycotics, with the aim of finding a solution to the increasing problem of the resistance of biofilms formed on medical devices by nonalbicans Candida species.  相似文献   

10.
A variety of manifestations of Candida albicans infections are associated with the formation of biofilms on the surface of biomaterials. Cells in biofilms display phenotypic traits that are dramatically different from their free-floating planktonic counterparts, such as increased resistance to anti-microbial agents and protection form host defenses. Here, we describe the characteristics of C. albicans biofilm development using a 96 well microtitre plate model, microscopic observations and a colorimetric method based on the use of a modified tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide, XTT) to monitor metabolic activities of cells within the biofilm. C. albicans biofilm formation was characterized by initial adherence of yeast cells (0-2 h), followed by germination and micro-colony formation (2-4 h), filamentation (4-6 h), monolayer development (6-8 h), proliferation (8-24 h) and maturation (24-48 h). The XTT-reduction assay showed a linear relationship between cellular density of the biofilm and metabolic activity. Serum and saliva pre-conditioning films increased the initial attachment of C. albicans, but had minimal effect on subsequent biofilm formation. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize C. albicans biofilms. Mature C. albicans biofilms consisted of a dense network of yeasts cells and hyphal elements embedded within exopolymeric material. C. albicans biofilms displayed a complex three dimensional structure which demonstrated spatial heterogeneity and a typical architecture showing microcolonies with ramifying water channels. Antifungal susceptibility testing demonstrated the increased resistance of sessile C. albicans cells against clinically used fluconazole and amphotericin B as compared to their planktonic counterparts.  相似文献   

11.
The ability of non-tuberculous mycobacteria to form biofilms may allow for their increased resistance to currently used biocides in medical and industrial settings. This study examines the biofilm growth of Mycobacterium fortuitum and Mycobacterium marinum, using the MBEC trade mark assay system, and compares the susceptibility of planktonic and biofilm cells to commercially available biocides. With scanning electron microscopy, both M. fortuitum and M. marinum form biofilms that are morphologically distinct. Biocide susceptibility testing suggested that M. fortuitum biofilms displayed increased resistance over their planktonic state. This is contrasted with M. marinum biofilms, which were generally as or more susceptible over their planktonic state.  相似文献   

12.
Two biofilm samples were collected from anaerobic groundwater in the depth range of 158.8–199.4 m in a borehole drilled in the Tono area, Japan, to understand their effects on the migration behavior of heavy metals in subsurface environments. The depth range is featured geologically by the lignite formation of sedimentary rocks that bear a uranium ore and the underlying granitic formation. Microbiomes of the derived biofilms, as well as of the ambient bacterioplankton, were characterized based on 16S rRNA gene sequences (clones) or phylotypes, and their heavy metal sorption properties were examined with reference to geochemical features of groundwaters. Phylotypic compositions of the four microbiomes, i.e., of biofilm vs. planktonic bacteria as well as in granitic vs. sedimentary rock groundwaters showed significant differences. In addition, each microbiome was dominated by one or two distinctive phylotypes. In bacterioplankton, the phylotype related to a betaproteobacterial environmental clone dominated 54% of the sequenced clones derived from sedimentary rock groundwater, whereas those related to Denitratisoma oestradiolicum and Clostridium sp. dominated 45% and 37%, respectively, of the clones derived from granitic groundwater. In biofilms, the phylotypes related to Methylobacillus flagellatus and Ignavibacterium album accounted for 77% and 78% of the clones of the biofilms derived from the sedimentary rock and granitic groundwaters, respectively. Chemical and mineralogical analyses demonstrated that high amounts of heavy metals such as Fe, Ni, Cu, Zn, As, Cd, Pb, Th and U accumulated in the biofilms; and their sorption properties varied between biofilms presumably with influences of co-occurring Fe-hydroxides and sulfide minerals under the redox conditions of approximately ?360 to 0 mV in subsurface environments. The biofilm-mineral interaction provides an implication for possible retardation of radionuclide migration in subsurface hydrology, which is of practical interest in geological disposal systems for high-level radioactive waste.  相似文献   

13.
Bacterial biofilms are known to withstand the effects of toxic metals better than planktonic cultures of the same species. This phenomenon has been attributed to many features of the sessile lifestyle not present in free-swimming populations, but the contribution of intracellular metabolism has not been previously examined. Here, we use a combined GC-MS and (1)H NMR metabolomic approach to quantify whole-cell metabolism in biofilm and planktonic cultures of the multimetal resistant bacterium Pseudomonas fluorescens exposed to copper ions. Metabolic changes in response to metal exposure were found to be significantly different in biofilms compared to planktonic cultures. Planktonic metabolism indicated an oxidative stress response that was characterized by changes to the TCA cycle, glycolysis, pyruvate and nicotinate and niacotinamide metabolism. Similar metabolic changes were not observed in biofilms, which were instead dominated by shifts in exopolysaccharide related metabolism suggesting that metal stress in biofilms induces a protective response rather than the reactive changes observed for the planktonic cells. From these results, we conclude that differential metabolic shifts play a role in biofilm-specific multimetal resistance and tolerance. An altered metabolic response to metal toxicity represents a novel addition to a growing list of biofilm-specific mechanisms to resist environmental stress.  相似文献   

14.
Here, we used an in vitro biofilm approach to study metal resistance and/or tolerance of mixed-species biofilms grown from an oil sand tailings pond in northern Alberta, Canada. Metals can be inhibitory to microbial hydrocarbon degradation. If microorganisms are exposed to metal concentrations above their resistance levels, metabolic activities and hydrocarbon degradation can be slowed significantly, if not inhibited completely. For this reason, bioremediation strategies may be most effective if metal-resistant microorganisms are used. Viability was measured after exposure to a range of concentrations of ions of Cu, Ag, Pb, Ni, Zn, V, Cr, and Sr. Mixed-species biofilms were found to be extremely metal resistant; up to 20 mg/L of Pb, 16 mg/L of Zn, 1,000 mg/L of Sr, and 3.2 mg/L of Ni. Metal mineralization was observed by visualization with scanning electron microscopy with metal crystals of Cu, Ag, Pb, and Sr exuding from the biofilms. Following metal exposure, the mixed-species biofilms were analyzed by molecular methods and were found to maintain high levels of species complexity. A single species isolated from the community (Rhodococcus erythropolis) was used as a comparison against the mixed-community biofilm and was seen to be much less tolerant to metal stress than the community and did not biomineralize the metals.  相似文献   

15.
酵母菌对重金属离子吸附的研究   总被引:1,自引:0,他引:1  
以6属33株酵母菌的活菌或死菌对重金属离子Cu2+、Cd2+和Ni2+进行了吸附能力的初步研究。结果显示∶吸附时间、吸附温度、溶液的pH、共存离子和菌体的生理状态对吸附作用都有明显的影响。在优化组合后发现一株假丝酵母菌对三种重金属离子的吸附比为Cd2+>Cu2+>Ni2+,每克活菌体吸附量分别为17.23mg>10.57mg>3.2mg。干菌体对三种重金属的吸附量较明显的低于活菌体的吸附量。  相似文献   

16.
17.
Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections.  相似文献   

18.
Phage therapy is being reexamined as a strategy for bacterial control in medical and other environments. As microorganisms often live in mixed populations, we examined the effect of Escherichia coli bacteriophage λW60 and Pseudomonas aeruginosa bacteriophage PB-1 infection on the viability of monoculture and mixed-species biofilm and planktonic cultures. In mixed-species biofilm communities, E. coli and P. aeruginosa maintained stable cell populations in the presence of one or both phages. In contrast, E. coli planktonic populations were severely depleted in coculture in the presence of λW60. Both E. coli and P. aeruginosa developed phage resistance in planktonic culture; however, reduced resistance was observed in biofilm communities. Increased phage titers and reduced resistance in biofilms suggest that phage can replicate on susceptible cells in biofilms. Infectious phage could be released from mixed-culture biofilms upon treatment with Tween 20 but not upon treatment with chloroform. Tween 20 and chloroform treatments had no effect on phage associated with planktonic cells, suggesting that planktonic phage were not cell or matrix associated. Transmission electron microscopy showed bacteriophage particles to be enmeshed in the extracellular polymeric substance component of biofilms and that this substance could be removed by Tween 20 treatment. Overall, this study demonstrates how mixed-culture biofilms can maintain a reservoir of viable phage and bacterial populations in the environment.  相似文献   

19.
In biofilm environments, heavy metal and radionuclide pollutants are removed by a variety of mechanisms, including biosorption, precipitation as sulfides or phosphates and microbial reductive precipitation. Even if the elemental composition and localization of the precipitate trapped in the biofilm is well described thanks to spectroscopic and microscopic techniques, this review highlights that little is known about metal immobilisation mechanisms in microbial biofilms, i.e., mass transfer of metals, mechanisms involved in (bio)sorption and precipitation and the influence of physicochemical micro-environments within the biofilm matrix. The review shows the advantage of using a combination of different techniques to evaluate the fate of metals within microbial biofilms. By combining a variety of techniques (e.g., selective extraction, microscopy, spectroscopy and miniaturised sensors ...), it is possible to gain high-resolution structural and chemical information of biofilms on a level of the individual cell. This approach will facilitate the characterization of the metal immobilisation sites and the metal sorption and (bio)crystallisation mechanisms in biofilms. The results provided by the combination of these techniques will allow to predict the amount of metal accumulation in biofilms as well as their chemical speciation. This review demonstrates that an interdisciplinary approach is required to study metal fate within the biofilm matrix. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The response of the planktonic, sediment, and epilithic bacterial communities to increasing concentrations of heavy metals was determined in a polluted river. None of the communities demonstrated a pollution-related effect on bacterial numbers (viable and total), heterotrophic activity, resistance to Pb or Cu, or species diversity as determined by either the Shannon-Wiener diversity index or rarefaction. The lack of correlation between concentrations of heavy metals and resistance in the sediment bacterial community was investigated and found to be due at least in part to the high pH of the river water and the resultant reduction in heavy metal toxicity. The three different communities demonstrated characteristic profiles based on the relative abundances of bacterial strains grouped according to functional similarities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号