首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The ultrastructure of bivalve spermatozoa can be species‐specific and often provides important taxonomic traits for systematic reviews and phylogenetic reconstructions. Young individuals of the Donacidae species Donax hanleyanus are often identified as samples of Donax gemmula. Hence, the spermatozoa ultrastructure of both species was described in the present work, aiming to identify characters that could be useful for further taxonomic and phylogenetic analyses. D. hanleyanus and D. gemmula spermatozoa were different especially in relation to acrosomal characteristics and chromatin condensation. The spermatozoon produced by D. hanleyanus had a nucleus (exhibiting granular chromatin with a rope‐like appearance) capped by a long and conical acrosomal vesicle, which extended itself outward beyond the anterior nuclear fossa. Otherwise, the nucleus of the sperm cell of D. gemmula showed well‐compacted chromatin, and its acrosome, which was partially inserted into the anterior nuclear fossa, had a bubble‐like tip. In conclusion, the conspicuous ultra‐structural differences found between the spermatozoan morphologies were helpful for the discrimination of the species. In conclusion, our results suggest that analyses of sperm ultrastructure of the bivalves in the family Donacidae can be valuable to investigate their taxonomic relatedness. The present results also contribute to assess the monophyletic status of the family.  相似文献   

2.
Previous studies of insect spermatozoa indicate that these specialized cells have undergone significant morphological evolution and exhibit traits useful for reconstructing phylogenetic relationships. Although leafhoppers (Cicadellidae) are among the largest and most economically important insect families, few comparative studies of their spermatozoa have been published. Here, the ultrastructure of mature spermatozoa of two leafhoppers Psammotettix striatus (Linnaeus) and Exitianus nanus (Distant), representing two different tribes of the largest leafhopper subfamily, Deltocephalinae, was examined by light and transmission electron microscopy. The shape and ultrastructure of spermatozoa of the two species are very similar to those of other Cicadellidae as well as other Auchenorrhyncha, comprising a conical acrosome invaginated to form a subacrosomal space, a filiform homogeneously condensed nucleus, a lamellate centriolar adjunct connecting the nucleus with the mid-piece/flagellum, a long flagellum with a 9 + 9 + 2 axoneme pattern and two symmetrical mitochondrial derivatives with an orderly array of peripheral cristae, and two drop-shaped accessory bodies. They may be distinguished by the size of the sperm, and the shape of the nucleus, accessory bodies, and paracrystalline region of mitochondrial derivatives. The fine morphology and ultrastructure of spermatozoon in P. striatus and E. nanus are illustrated, along with a brief discussion of the implications for classification and phylogenetic analyses of the subfamily.  相似文献   

3.
Spermiogenesis and spermatozoa were studied by transmission and scanning electron microscopy in Troglocaridicolasp., a scutariellid epizoic on a cavernicolous freshwater shrimp. Spermiogenesis involves elongation of the spermatid in which the nucleus elongates, but remains close to the common cytoplasmic mass. Flagella first grow in opposite direction and at a right angle to the cytoplasmic shaft, and centrioles show associate structures. Later, the two centrioles rotate and the flagella emerge parallel, but still perpendicular to the shaft. An apical process elongates at the extremity of the spermatid shaft. The spermatozoon shows active flagellar beating and undulations of the sperm body. The spermatozoon comprises an anterior ‘corkscrew’ region, the flagellar insertion region, a cytoplasmic region and a posterior nuclear region. The corkscrew contains an electron dense structure, not membrane-bound, originating from the apical process of the spermatid. The flagella show the 9+‘1’ pattern, usual in Platyhelminthes. The cytoplasmic and nuclear regions show a cortical row of about 50 twisted longitudinal microtubules surrounding a row of electron dense, and not membrane-bound, 25-nm granules. These granules are original structures and seem to be known only in a few Platyhelminthes species in which a non-flagellar movement of the spermatozoon occurs. Thus, it is hypothesised that the 25-nm granules play a role in cellular motility. Sperm ultrastructure in Troglocaridicolashows major differences to that in the temnocephalids. It is therefore concluded that the phylogenetic position of the scutariellids within the Temnocephalidea should be reinvestigated.  相似文献   

4.
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm.The mature spermatozoon presents two axonemes of the 9 + ‘1’ trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.  相似文献   

5.
Spermiogenesis in Robphildollfusium fractum begins with the formation of a differentiation zone containing: two centrioles, each bearing striated rootlets, nucleus, several mitochondria and an intercentriolar body constituted by seven electron-dense layers. The two centrioles originate two free flagella growing orthogonally to the median cytoplasmic process. Later, the free flagella rotate and undergo proximodistal fusion with the median cytoplasmic process. Nuclear and mitochondrial migrations occur before this proximodistal fusion. Finally, the young spermatozoon detaches from the residual cytoplasm after the constriction of the ring of arched membranes. The spermatozoon of R. fractum exhibits two axonemes of different length of the 9 + ‘1’ trepaxonematan pattern, nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. Additionally, a shorter axoneme, which does not reach the nuclear region, the presence of an electron-dense material in the anterior spermatozoon extremity and the morphologies of both spermatozoon extremities characterize the mature sperm of R. fractum.  相似文献   

6.
Northern pike (Esox lucius L.) spermatozoa are uniflagellated cells differentiated into a head without acrosome, a midpiece and a flagellar tail region flanked by a fin structure. Total, flagellar, head and midpiece lengths of spermatozoa were measured and show mean values of 34.5, 32.0, 1.32, 1.17 μm, respectively, with anterior and posterior widths of the midpiece measuring 0.8 and 0.6 μm, respectively. The osmolality of seminal plasma ranged from 228 to 350 mOsmol kg−1 (average: 283.88 ± 33.05). After triggering of sperm motility in very low osmolality medium (distilled water), blebs appeared along the flagellum. At later periods in the motility phase, the tip of the flagellum became curled into a loop shape which resulted in a shortening of the flagellum and a restriction of wave development to the proximal part (close to head). Spermatozoa velocity and percentage of motile spermatozoa decreased rapidly as a function of time postactivation and depended on the osmolality of activation media (P < 0.05). In general, the greatest percentage of motile spermatozoa and highest spermatozoa velocity were observed between 125 and 235 mOsmol kg−1. Osmolality above 375 mOsmol kg−1 inhibited the motility of spermatozoa. After triggering of sperm motility in activation media, beating waves propagated along the full length of flagella, while waves appeared dampened during later periods in the motility phase, and were absent at the end of the motility phase. By increasing osmolality, the velocity of spermatozoa reached the highest value while wave length, amplitude, number of waves and curvatures also were at their highest values. This study showed that sperm morphology can be used for fish classification. Sperm morphology, in particular, the flagellar part showed several changes during activation in distilled water. Sperm motility of pike is inhibited due to high osmolality in the seminal plasma. Osmolality of activation medium affects the percentage of motile sperm and spermatozoa velocity due to changes in flagellar wave parameters.  相似文献   

7.
This paper describes the ultrastructure of the male gamete of Glossobothrium sp. (Bothriocephalidea: Triaenophoridae). The mature spermatozoon of Glossobothrium sp. is filiform and possesses two axonemes, a single helicoidal crested body, a parallel nucleus, parallel cortical microtubules and granules of glycogen. In Glossobothrium sp. we describe for first time a 200-250 nm thick crest-like body in the Bothriocephalidean. The anterior part of the spermatozoon exhibits a ring of 27 electron-dense cortical microtubules encircling the first axoneme. This structure persists until the appearance of the second axoneme. When the ring of electron-dense cortical microtubules disappears, the spermatozoon exhibits two bundles of thin cortical microtubules. The posterior part of the spermatozoon contains the posterior extremity of the second axoneme, the posterior extremity of the nucleus and few cortical microtubules. Soon nucleus disappears and the axoneme is disorganized. Thus the posterior extremity of the spermatozoon of Glossobothrium sp. exhibits only singlets produced by the disorganization of the doublets of the second axoneme and few cortical microtubules. This type of posterior extremity of the mature spermatozoon has never been described previously in the Triaenophoridae.  相似文献   

8.
《Tissue & cell》2016,48(6):596-604
The Drosophilidae family is formed by Brachycera Diptera distributed widely across different regions of the planet. It is composed of about 4000 species, 304 of which are found in Brazil. The objective of this work was to characterize morphologically the structure of the male internal reproductive apparatus and the ultrastructure of the spermatozoon in four Neotropical (Drosophila cardini, D. mercatorum, D. nebulosa and D. sturtevanti) and two invasive (D. simulans and Zaprionus indianus) species of drosophilids. The structural aspect of the internal reproductive apparatus corresponds with that described for other drosophilids; however, there are differences in the size and coloration of the structures, such as the testes, in each species analyzed. The spermatozoon of these species was seen to be long and fine, presenting morphological variation. The ultrastructure of the spermatozoon revealed that the morphological pattern is similar to that found in the majority of insects. The head region presents a nucleus with condensed chromatin and the acrosome positioned laterally to the nucleus. In the tail region, the axoneme presents the 9 + 9 + 2 pattern commonly described for other species of Diptera. The species presented differences regarding the shape and size of the mitochondrial derivatives. Cytochemical analysis using EPTA also revealed differences in terms of the location of the basic proteins in the mitochondrial derivates. The results obtained contribute to expanding the database for the Drosophilidae family, providing information that may contribute to intra- and inter-specific identification and supplying phylogenetic analyses.  相似文献   

9.
The mature spermatozoon of Cricocephalus albus is filiform, tapered at both ends and shows the following features: 2 axonemes of different lengths presenting the 9 + “1” trepaxonematan pattern, 2 bundles of parallel cortical microtubules, a mitochondrion and a nucleus. Nevertheless, the particularity of the spermatozoon of C. albus is its anterior extremity with an apical electron-dense material associated with extramembranar ornamentation, a cytoplasmic dorsolateral expansion and spine-like bodies. To our knowledge, such an anterior extremity of the spermatozoon has not previously been described from a species of the superfamily Pronocephaloidea. Our study provides new data on the mature gamete of C. albus in order to improve our understanding of the pronocephaloidean phylogenetic relationships.  相似文献   

10.
11.
12.
The ultrastructural organization of the spermatozoon of a cryptogonimid digenean, Aphallus tubarium, a parasite of Dentex dentex, is described. The spermatozoon possesses the elements found in other digeneans: two axonemes with 9 + “1” pattern, a mitochondrion, a nucleus, cortical microtubules, external ornamentation and spine-like bodies. However, the mitochondrion appears as a cord with a bulge; this characteristic has never been described in other studied cryptogonimid and in other digeneans except in one lepocreadiid, Holorchis micracanthum. Likewise, the presence of a thin cytoplasm termination in the anterior part of the spermatozoon has never been pointed out in the cryptogonimids.  相似文献   

13.
We studied the ultrastructure of spermatogenesis and spermatozoa in the northern quahaug, the clam Mercenaria mercenaria. Spermatogenetic cells gradually elongate. Mitochondria gradually fuse and increase in size and electron density. During spermatid differentiation, proacrosomal vesicles migrate towards the presumptive anterior pole of the nucleus and eventually form the acrosome. The spermatozoon of M. mercenaria is of a primitive type. It is composed of head, mid-piece, and tail. The acrosome shows a subacrosomal space with a short conical contour. The slightly curved nucleus of the spermatozoon contains fine-grained dense chromatin. The middle piece consists of a centriolar complex which is surrounded by four mitochondria. The flagellum has a standard “9 + 2” microtubular structure. The ultrastructure of spermatozoa and spermatogenesis of M. mercenaria shares a number of features with other species of the family Veneridae. M. mercenaria may be a suitable model species for further investigations into the mechanisms of spermatogenesis in the Bivalvia.  相似文献   

14.
The mature spermatozoon of Aponurus laguncula, a parasite of the unicorn leatherjacket Aluterus monoceros, was studied by transmission electron microscopy. The spermatozoon possesses 2 axonemes of the 9 + “1” trepaxonematan pattern, attachment zones, a nucleus, a mitochondrion, external ornamentation of the plasma membrane and cortical microtubules. The major features are the presence of: 1) external ornamentation in the anterior part of the spermatozoon not associated with cortical microtubules; 2) one mitochondrion; and 3) cortical microtubules arranged as a single field in the ventral side. The maximum number of microtubules is in the nuclear region. The extremities of the axonemes are characterized by the disappearance of the central core and the presence of microtubule doublets or singlets. This study is the first undertaken with a member of the Lecithasteridae and exemplifies the sperm ultrastructure for the superfamily Hemiuroidea.  相似文献   

15.
The ultrastructural organization of the spermatozoon of the digenean Hypocreadium caputvadum (Lepocreadioidea: Lepocreadiidae) is described. Live digeneans were collected from Balistes capriscus (Teleostei: Balistidae) from the Gulf of Gabès, Tunisia (Eastern Mediterranean Sea). The mature spermatozoon of H. caputvadum shows several ultrastructural characters such as two axonemes of different lengths exhibiting the classical 9 + “1” trepaxonematan pattern, a nucleus, two mitochondria, granules of glycogen, external ornamentation of the plasma membrane and two bundles of parallel cortical microtubules. Moreover, in the anterior extremity, the second axoneme is partly surrounded by a discontinuous and submembranous layer of electron-dense material. Our study provides new data on the spermatozoon of H. caputvadum in order to improve the understanding of phylogenetic relationships in the Digenea, particularly in the superfamily Lepocreadioidea. In this context, the electron-dense material surrounding one of the axonemes in the anterior spermatozoon extremity constitutes the unique distinguishing ultrastructural character of lepocreadioideans, and it is present in spermatozoa of lepocreadiids, aephnidiogenids and gyliauchenids.  相似文献   

16.
Lung fluke, Paragonimus heterotremus, is a flatworm causing pulmonary paragonimiasis in cats, dogs, and humans in Southeast Asia. We examined the ultrastructure of the testis of adult P. heterotremus with special attention to spermatogenesis and spermiogenesis using scanning and transmission electron microscopy. The full sequence of spermatogenesis and spermiogenesis, from the capsular basal lamina to the luminal surface, was demonstrated. The sequence comprises spermatogonia, spermatocytes with obvious nuclear synaptonemal complexes, spermatids, and eventual spermatozoa. Moreover, full steps of spermatid differentiation were shown which consisted of 1) early stage, 2) differentiation stage representing the flagella, intercentriolar body, basal body, striated rootlets, and electron dense nucleus of thread-like lamellar configuration, and 3) growing spermatid flagella. Detailed ultrastructure of 2 different types of spermatozoa was also shown in this study.  相似文献   

17.
18.
In Pronocephaloidea, the spermatozoa of only two species have been studied today. Because of this, we present in this work data concerning to a third specie, Pleurogonius truncatus Prudhoe, 1944. The mature spermatozoon of P. truncatus possesses two axonemes with the 9+"1" pattern typical of Trepaxonemata, mitochondrion, nucleus, parallel cortical microtubules, spinelike bodies, cytoplasmic expansion and an external ornamentation of the plasma membrane. A particularity of the spermatozoon of P. truncatus is in the ultrastructure of the anterior spermatozoon extremity with only cortical microtubules and ornamentation of the plasma membrane. This type of anterior extremity has never been described until today in Pronocephaloidea. On the other hand, the ultrastructure of the posterior extremity of the spermatozoon confirms that already described in Pronocephalidae.  相似文献   

19.
This paper describes the ultrastructure of the mature spermatozoon of Heterolebes maculosus. It is the first study of this kind concerning the Opistholebetidae (Platyhelminthes, Digenea). The ultrastructural elements observed in the spermatozoon are: two axonemes with 9+“1” pattern of Trepaxonemata and their attachment zones, two mitochondria, a nucleus, cortical microtubules, external ornamentation of the plasma membrane and spine-like bodies. The number and the disposition of cortical microtubules, the organisation of 11 cortical microtubules disposed in semi-circle around the first mitochondrion in the external ornamentation region and the organisation of the posterior part of the spermatozoon are discussed. Three principal types of posterior part of digenean spermatozoa are proposed. The similarity between the spermatozoon of the Opistholebetidae H. maculosus and Opecoelidae enables us to confirm that these two families are closely related.  相似文献   

20.
The ultrastructure of the mature spermatozoa and spermatogenesis of the bivalve Scrobicularia plana are described. Support cells extend from the basal lamina to the lumen of the testis and are laterally connected to the germinal epithelium. Germ cells present intercellular bridges and flagella since the spermatogonial stage. While spermatogonia and spermatocytes appear connected to support cells by desmosome-like junctions, elongated spermatids are held at the acrosomal region by support cell finger-like processes. During spermiogenesis, the acrosomal vesicle differentiates from a golgian saccule and then migrates to the nuclear apex. A microtubular manchette arising from centrioles surrounds the acrosomal vesicle, the nucleus, and the mitochondria at the time these three organelles start their elongation, disappearing after that. The mature spermatozoon of S. plana lacks a distinct midpiece because the mitochondria extend from the region of the pericentriolar complex along the nucleus anteriorly for approximately 1.4 μm. The features of this bivalve type of modified spermatozoon are compared with those of other animal groups having similar modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号