首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary Transmission electron microscopy was used to study the development of the flagellar base and the flagellar necklace during spermatogenesis in a moth (Ephestia kuehniella Z.). Until mid-pachytene, two basal body pairs without flagella occur per cell. The basal bodies, which contain a cartwheel complex, give rise to four flagella in late prophase I. The cartwheel complex appears to be involved in the nucleation of the central pair of axonemal microtubules. In spermatids, there is one basal body; this is attached to a flagellum. At this stage, the nine microtubular triplets of the basal body do not terminate at the same proximal level. The juxtanuclear triplets are shifted distally relative to the triplets distant from the nuclear envelope. Transition fibrils and a flagellar necklace are formed at the onset of axoneme elongation. The flagellar necklace includes Y-shaped elements that connect the flagellar membrane and the axonemal doublets. In spindle-containing spermatocytes, the flagellar necklace is no longer detectable. During spermatid differentiation, the transition fibrils move distally along the axoneme and a prominent middle piece appears. Our observations and those in the literature indicate certain trends in sperm structure. In sperms with a short middle piece, we expect the presence of a flagellar necklace. The distal movement of the transition fibrils or equivalent structures is prevented by the presence of radial linkers between the flagellar membrane and the axonemal doublets. On the other hand, the absence of a flagellar necklace at the initiation of spermiogenesis enables the formation of a long middle piece. Thus, in spermatozoa possessing an extended middle piece, a flagellar necklace may be missing.  相似文献   

2.
Transmission electron microscopy of the spermatozoa of five species from three families of bivalves has shown that each species has a sperm with unique morphology. However, the morphology of the acrosomes of each species is typical of the subclass of bivalve to which they belong. An examination of spermatogenesis in the five species, along with a re-examination of material from six other species of bivalves, has revealed that pre-spermiogenic cells possess flagella. In addition, acrosome formation begins in the spermatocytes with the formation of proacrosomal vesicles in the Golgi body. During spermiogenesis the proacrosomal vesicles coalesce at the presumptive posterior of the spermatid, with a larger vesicle produced by the Golgi body. The single acrosomal vesicle eventually migrates to the anterior of the spermatid where it assumes its mature form. © 1994 Wiley-Liss, Inc.  相似文献   

3.
In this paper spermatogenesis and sperm ultrastructure of the cockle Anadara granosa are studied using transmission electron microscopy. The spermatocyte presents electron-dense vesicles and the arising axoneme that begins to form the flagellum. During spermatid differentiation, proacrosomal vesicles appear to migrate towards the presumptive anterior pole of the nucleus; eventually these vesicles become acrosome. The spermatozoon of Anadara granosa is of the primitive type. The acrosome, situated at the apex of the nucleus, is cap-shaped and deeply invaginated at the inner side. The spherical nucleus of the spermatozoon contains dense granular chromatin and shows invagination at the posterior poles. The centriole shows the classic nine triplets of microtubules. The middle piece consists of the centriolar complex surrounded by five giant mitochondria. It is shown that the ultrastructure of spermatozoa and spermiogenesis of Anadara granosa reveals a number of features that are common among bivalves. Received: 29 September 1998 / Received in revised form: 20 May 1999 / Accepted: 14 June 1999  相似文献   

4.
The fate of the proximal centriole in passeridan birds is an area of controversy and relative lack of knowledge in avian spermatogenesis and spermatology. This study examines, for the first time, spatiotemporal changes in the centriolar complex in various phases of spermiogenesis in a passerine bird, the Masked weaver (Ploceus velatus). It also describes the configuration of the centriolar complex and the relationship between it and the granular body in both intra- and extra-testicular spermatozoa. It is shown that the proximal centriole is retained and attaches, at its free end, to the granular body of spermatids in every step of spermiogenesis, as well as in mature intra-testicular and post-testicular spermatozoa, including those in the lumen of the seminal glomus. As the centriolar complex, along with its attached granular body, approaches the nucleus in the early spermatid, the proximal centriole articulates with the distal centriole at an acute angle of about 45°, and thereafter, both centrioles, still maintaining this conformation, implant, by means of their articulating proximal ends, at the implantation fossa of the nucleus. In the mature spermatid and spermatozoon, the granular body winds itself helically around the centriolar complex in the neck/midpiece region of the cell, and, thus, becomes the granular helix. The significance of this observation must await future studies, including possible phylogenetic re-evaluation and classification of birds.  相似文献   

5.
Spermatogenesis and spermatozoon ultrastructure in the Nile electric catfish Malapterurus electricus are described using scanning and transmission electron microscopy. Although the testis organization conforms to the ‘unrestricted’ spermatogonial type, the species has a rare type of spermatogenesis not previously described among catfishes, ‘semicystic’, in which the cyst ruptures before the spermatozoon stage. Spermiogenesis also involves some peculiar features such as condensation of the chromatin in the posterior part of the nucleus to form a compact electron‐dense mass with some irregular electron‐lucent lacunae, while the uppermost part of the nucleus is a loose electron‐lucent area, absence of the nuclear rotation and, as a consequence, the centriolar complex and the initial segment of each flagellum arise directly in a position perpendicular to the basal pole of the nucleus, and occurrence of numerous vesicles in the midpiece. In addition, spermiogenesis includes migration of the diplosome and mitochondria to the basal pole of the nucleus, formation of two moderate nuclear fossae, each of which contains the centriolar complex, development of two independent flagella and elimination of the excess cytoplasm. The mature spermatozoon has a more or less round head with no acrosome or acrosomal vesicle, a long midpiece with numerous mitochondria and vesicles and two long tails or flagella having the classical axoneme structure of 9 + 2 microtubular doublet pattern and with no lateral fins and membranous compartment. These findings suggest that the ultrastructural features of spermiogenesis and spermatozoa of Melectricus are synapomorphies of types I and II spermiogenesis and spermiogenesis is closely similar to the type described in the Nile catfish Chrysichthys auratus.  相似文献   

6.
Electron microscopy of the testes of the free-living flatworm Mesocastrada fuhrmanni collected from temporary freshwater ponds shows stages of spermiogenesis that are like other species of the Typhloplanidae. Spermiogenesis in Mesocastrada fuhrmanni is characterized by the presence, in the spermatid, of a differentiation zone underlain by peripheral microtubules and centered on two centrioles with an intercentriolar body. Two flagella of the 9+“1” pattern of the Trepaxonemata grow out in opposite directions from the centrioles. The flagella undergo a latero-ventral rotation, and a subsequent disto-proximal rotation of centrioles occurs in the spermatid. The former rotation involves the compression and the detachment of a row of cortical microtubules, and allows us to recognize a ventral from a dorsal side. Two features are of special interest at the end of differentiation: peripheral cortical microtubules lie parallel to the sperm axis near the anterior tip, but microtubules become twisted (about 40° with reference to the gamete axis) near the posterior extremity; in the same way, the posterior tip of the nucleus is spiralled. As far as we know, these features are observed for the first time in the Typhloplanidae. The pattern of spermiogenesis and the ultrastructural organization of the spermatozoon are compared with the available data on Typhloplanoida and in particular, species of the Typhloplanidae family.  相似文献   

7.
This is the first study investigating spermatogenesis and spermatozoan ultrastructure in the polyclad flatworm Prosthiostomum siphunculus. The testes are numerous and scattered as follicles ventrally between the digestive ramifications. Each follicle contains the different stages of sperm differentiation. Spermatocytes and spermatids derive from a spermatogonium and the spermatids remain connected by intercellular bridges. Chromatoid bodies are present in the cytoplasm of spermatogonia up to spermatids. During early spermiogenesis, a differentiation zone appears in the distal part of spermatids. A ring of microtubules extends along the entire sperm shaft just beneath the cell membrane. An intercentriolar body is present and gives rise to two axonemes, each with a 9 + “1” micro‐tubular pattern. Development of the spermatid leads to cell elongation and formation of a filiform, mature spermatozoon with two free flagella and with cortical microtubules along the sperm shaft. The flagella exit the sperm shaft at different levels, a finding common for acotyleans, but so far unique for cotylean polyclads. The Golgi complex produces numerous electron‐dense bodies of two types and of different sizes. These bodies are located around a perinuclear row of mitochondria. The elongated nucleus extends almost along the entire sperm body. The nucleus is wide in the proximal part and becomes narrow going towards the distal end. Thread‐like chromatin mixed with electron‐dense intranuclear spindle‐shaped bodies are present throughout nucleus. The general sperm ultrastructure, the presence of intranuclear bodies and a second type of cytoplasmic electron‐dense bodies may provide characters useful for phylogenetic analysis.  相似文献   

8.
金鱼精巢的细胞构造与精子的发生和形成   总被引:40,自引:2,他引:38  
  相似文献   

9.
10.
Spermatic characteristics were studied in 10 species representing several distinct groups within the catfish family Doradidae. Interestingly, different types of spermatogenesis, spermiogenesis and spermatozoa are correlated with intrafamilial groups previously proposed for Doradidae. Semi-cystic spermatogenesis, modified Type III spermiogenesis, and biflagellate sperm appear to be unique within Doradidae to the subfamily Astrodoradinae. Other doradid species have sperm with a single flagellum, cystic spermatogenesis, and spermiogenesis of Type I (Pterodoras granulosus, Rhinodoras dorbignyi), Type I modified (Oxydoras kneri), or Type III (Trachydoras paraguayensis). Doradids have an external mode of fertilization, and share a few spermatic characteristics, such as cystic spermatogenesis, Type I spermiogenesis and uniflagellate sperm, with its sister group Auchenipteridae, a family exhibiting sperm modifications associated with insemination and internal fertilization. Semi-cystic spermatogenesis and biflagellate spermatozoa are also found in Aspredinidae, and corroborate recent proposals that Aspredinidae and Doradoidea (Doradidae + Auchenipteridae) are sister groups and that Astrodoradinae occupies a basal position within Doradidae. The co-occurrence in various catfish families of semi-cystic spermatogenesis and either biflagellate spermatozoa (Aspredinidae, Cetopsidae, Doradidae, Malapturidae, Nematogenyidae) or uniflagellate sperm with two axonemes (Ariidae) reinforces the suggestion that such characteristics are correlated. Semi-cystic spermatogenesis and biflagellate sperm may represent ancestral conditions for Loricarioidei and Siluroidei of Siluriformes as they occur in putatively basal members of each suborder, Nematogenyidae and Cetopsidae, respectively. However, if semi-cystic spermatogenesis and biflagellate sperm are ancestral for Siluriformes, cystic spermatogenesis and uniflagellate sperm have arisen independently in multiple lineages including Diplomystidae, sister group to Siluroidei.  相似文献   

11.
To add to our understanding of dendrocoelid spermatozoa and to describe additional phylogenetic characters, the ultrastructure of the testis was investigated in the subterranean freshwater planarian Dendrocoelum constrictum. This is the first study investigating spermatogenesis and spermatozoon ultrastructure in a subterranean freshwater planarian species. We found that the basic structure of spermatozoa in D. constrictum is similar to that of other Tricladida that have been studied previously. In fact, D. constrictum spermatozoa possess an elongated nucleus, one giant mitochondrion, and two subterminal flagella with a 9 + ‘1’ pattern. The flagella emerge together from one side of the spermatozoon. However, D. constrictum has some characteristics that have not yet been described for other freshwater planarians. In fact, the number of cortical microtubules reaches the maximum number in the anterior and middle part of region I, and then decrease until they disappear towards the posterior extremity of the spermatozoon. The extreme tip of the anterior region of the spermatozoon exhibits a specific external ornamentation of the plasma membrane.  相似文献   

12.
13.
This paper reports an electron microscope study of typical and atypical spermatogenesis in the pond snail, Cipangopaludina malteata. In the typical spermatid the nucleus undergoes profound changes as development proceeds, affecting both its form and internal fine structure. A large number of roughly parallel, dense filaments, arranged along the long axis of the nucleus, fuse with each other to form in the end the homogeneous helical body characteristic of the head of the adult spermatozoa. The nebenkern is apparently mitochondrial in nature and, in its early development, is similar to that of insects except that it appears as a double structure from the beginning. As differentiation proceeds, the mitochondria lose their membranes, and the residual, now denuded cristae, reorganize to give a parallel radial arrangement. In the last stages of development, the nebenkern derivations become applied to the sheath of the middle piece in a compact helical fashion. In the development of the atypical spermatozoa, the nucleus fails to differentiate and simply shrinks in volume until only a remnant, devoid of DNA, is left. The cytoplasm shows numerous vesicles containing small Feulgen-positive bodies, 80 to 130 mµ in diameter. These vesicles plus contents increase in number as spermatogenesis proceeds. The "head" structure of the atypical spermatozoa consists of a bundle (7 to 17) of tail flagella, each with a centriole at its anterior end. The end-piece of the atypical form appears brush-like and is made up of the free ends of the several flagella.  相似文献   

14.
In the present study spermiogenesis was investigated in Cetopsis coecutiens (Cetopsidae), and Bunocephalus amazonicus (Aspredinidae), while spermatozoa ultrastructure was investigated in C. coecutiens, B. amazonicus, and Nematogenys inermis (Nematogenyidae). Aspredinidae and Cetopsidae share a spermatogenesis of the semicystic type, and a particular type of spermiogenesis process not reported in any fish group. In the three species analyzed, spermatozoa are biflagellate with flagella having the classical axoneme formulae (9 + 2). The analysis of thirteen characters showed the presence of eight characters shared by Cetopsidae and Aspredinidae, and six characters shared by Cetopsidae and Nematogenyidae, which may suggest that these three families may be more related than actually hypothesized, comprising a very primitive siluriform lineage originated after Diplomystidae.  相似文献   

15.
The ultrastructure of the mature spermatozoa and spermatogenesis of the bivalve Scrobicularia plana are described. Support cells extend from the basal lamina to the lumen of the testis and are laterally connected to the germinal epithelium. Germ cells present intercellular bridges and flagella since the spermatogonial stage. While spermatogonia and spermatocytes appear connected to support cells by desmosome-like junctions, elongated spermatids are held at the acrosomal region by support cell finger-like processes. During spermiogenesis, the acrosomal vesicle differentiates from a golgian saccule and then migrates to the nuclear apex. A microtubular manchette arising from centrioles surrounds the acrosomal vesicle, the nucleus, and the mitochondria at the time these three organelles start their elongation, disappearing after that. The mature spermatozoon of S. plana lacks a distinct midpiece because the mitochondria extend from the region of the pericentriolar complex along the nucleus anteriorly for approximately 1.4 μm. The features of this bivalve type of modified spermatozoon are compared with those of other animal groups having similar modifications.  相似文献   

16.
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm.The mature spermatozoon presents two axonemes of the 9 + ‘1’ trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.  相似文献   

17.
18.
Zaprionus indianus is a drosophilid native to the Afrotropical region that has colonized South America and exhibits a wide geographical distribution. In contrast, Z. sepsoides is restricted to certain African regions. The two species differ in the size of their testes, which are larger in Z. indianus than in Z. sepsoides. To better understand the biology and the degree of differentiation of these species, the current study evaluated spermatogenesis in males of different ages by conventional staining techniques and ultrastructural analysis. Spermatogenesis and the ultrastructure of spermatozoa were similar in the two species, and the diploid number was confirmed to be 2n = 12. A greater number of spermatozoa were observed in young Z. indianus (1–3 days old) compared to Z. sepsoides males, which showed a higher frequency of cells at the early stages of spermatogenesis. The head of the sperm was strongly marked by silver staining, lacto-acetic orcein and the Feulgen reaction; the P.A.S. reaction revealed glycogen granules in the testes of both species. Both species presented similar arrangement of microtubules (9+9+2), two mitochondrial derivatives of different size and 64 spermatozoa per bundle. Such similarity within the genus Zaprionus with other species of Drosophila, indicates that these structures are conserved in the family Drosophilidae. The differences observed the number and frequency of sperm cells in the early stages of spermatogenesis, between the young males of Z. indianus and Z. sepsoides, are features that may interfere with reproductive success and be related to the invasive potential of Z. indianus.  相似文献   

19.
20.
超微结构研究显示傅氏凤尾蕨(Pteris fauriei Hieron)精子发生过程包括生毛体、多层结构和鞭毛等运动细胞器重新发生,环状线粒体形成,核塑形等过程,最后形成一个螺旋形的游动精子,这与其他真蕨类精子发生过程相似。本研究观察到的一些新现象包括:精细胞在分化早期呈极性,细胞核位于精细胞的近极端,生毛体、线粒体和质体等细胞器主要分布远极端;在生毛体分化早期,可见大量微管从其发出,其周围线粒体丰富;基体分化经历了前中心粒、中心粒和基体3个阶段,它们的内部结构不同;研究表明生毛体内的不定形物质是微管组织者,多层结构、附属微管带及鞭毛等细胞器均由不定形物质分化形成;精细胞在分化过程中产生了丰富的膜结构,它们可能为精核塑形提供原料。本研究报道了傅氏凤尾蕨精细胞分化的一些细节,这有助于进一步揭示蕨类植物精子发生的细胞学机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号