首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Barley (Hordeum vulgare L.) is well known for its relatively high salt tolerance among cereal crops. However, the genetic variation of cultivated barley becomes narrower due to continuous artificial selection and breeding processes. Compared with cultivated barley, wild barley contains wider genetic variation and abundant sources for abiotic stress tolerance, considering as an elite resource for mechanism study on salt tolerance. In this study, Tibetan wild barley accession XZ113 identified with high salt tolerance, was used to investigate ionic responses and to identify proteins involved in salt tolerance in roots and shoots at early stage of salt stress, during 48 h. Exposed to salinity, shoot growth is more sensitive than root growth. Conversely, K/Na ratio in the shoots was larger than that in the roots, and both were above 1.0. Steady-state K+ flux experiment showed XZ113 had a strong K+-retaining ability under salt stress, maybe contributing to its good performance of the absolute growth rate. Proteomic results suggested that monodehydroascorbate reductase and peroxidases related to reactive oxygen species scavenging in the roots and phosphoglycerate kinase, triosephosphate isomerase and sedoheptulose-1,7-bisphosphatase associated with photosynthesis and metabolisms in the shoots, played important roles in salt tolerance at early stage of salinity in wild barley.  相似文献   

2.
3.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

4.
Tibetan wild barley is rich in genetic diversity with potential allelic variation useful for salinity-tolerant improvement of the crop. The objectives of this study were to evaluate salinity tolerance and analysis of the allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Salinity tolerance of 189 Tibetan wild barley accessions was evaluated in terms of reduced dry biomass under salinity stress. In addition, Na+ and K+ concentrations of 48 representative accessions differing in salinity tolerance were determined. Furthermore, the allelic and functional diversity of HvHKT1 and HvHKT2 was determined by association analysis as well as gene expression assay. There was a wide variation among wild barley genotypes in salt tolerance, with some accessions being higher in tolerance than cultivated barley CM 72, and salinity tolerance was significantly associated with K+/Na+ ratio. Association analysis revealed that HvHKT1 and HvHKT2 mainly control Na+ and K+ transporting under salinity stress, respectively, which was validated by further analysis of gene expression. The present results indicated that Tibetan wild barley offers elite alleles of HvHKT1 and HvHKT2 conferring salinity tolerance.  相似文献   

5.
6.

Background

Drought is one of major abiotic stresses constraining crop productivity worldwide. To adapt to drought stress, plants have evolved sophisticated defence mechanisms. Wild barley germplasm is a treasure trove of useful genes and offers rich sources of genetic variation for crop improvement. In this study, a proteome analysis was performed to identify the genetic resources and to understand the mechanisms of drought tolerance in plants that could result in high levels of tolerance to drought stress.

Results

A greenhouse pot experiment was performed to compare proteomic characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and cv. ZAU3, in response to drought stress at soil moisture content 10 % (SMC10) and 4 % (SMC4) and subsequently 2 days (R1) and 5 days (R2) of recovery. More than 1700 protein spots were identified that are involved in each gel, wherein 132, 92, 86, 242 spots in XZ5 and 261, 137, 156, 187 in XZ54 from SMC10, SMC4, R1 and R2 samples were differentially expressed by drought over the control, respectively. Thirty-eight drought-tolerance-associated proteins were identified using mass spectrometry and data bank analysis. These proteins were categorized mainly into photosynthesis, stress response, metabolic process, energy and amino-acid biosynthesis. Among them, 6 protein spots were exclusively expressed or up-regulated under drought stress in XZ5 but not in XZ54, including melanoma-associated antigen p97, type I chlorophyll a/b-binding protein b, glutathione S-transferase 1, ribulosebisphosphate carboxylase large chain. Moreover, type I chlorophyll a/b-binding protein b was specifically expressed in XZ5 (Spots A4, B1 and C3) but not in both of XZ54 and ZAU3. These proteins may play crucial roles in drought-tolerance in XZ5. Coding Sequences (CDS) of rbcL and Trx-M genes from XZ5, XZ54 and ZAU3 were cloned and sequenced. CDS length of rbcL and Trx-M was 1401 bp (the partial-length CDS region) and 528 bp (full-length CDS region), respectively, encoding 467 and 176 amino acids. Comparison of gene sequences among XZ5, XZ54 and ZAU3 revealed 5 and 2 SNPs for rbcL and Trx-M, respectively, with two 2 SNPs of missense mutation in the both genes.

Conclusions

Our findings highlight the significance of specific-proteins associated with drought tolerance, and verified the potential value of Tibetan wild barley in improving drought tolerance of barley as well as other cereal crops.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1657-3) contains supplementary material, which is available to authorized users.  相似文献   

7.
Abstract Protein synthesis during seed germination, a stage vulnerable to salinity stress, was investigated. The responses of barley genotypes, CM72 (California Mariout 72) and Prato, toward salinity were different during seed germination. Germination of CM72 was unaffected up to 0.34 kmol m?3 (2%) NaCl, but that of Prato was reduced 30% by 0.17 kmol m 3 NaCl and 75% by 0.34 kmol m?3 NaCl. Therefore, the former genotype is relatively more salt-tolerant than the latter. Protein synthesis in roots, shoots, and embryos was investigated in these two genotypes before and after salinity stress. The uptake of S-methionine and its incorporation into protein were significantly reduced by salinity in both genotypes. The inhibition of global protein synthesis was significant in roots and shoots. Proteins from different tissues were resolved by single and two dimensional gels. The steady-state protein levels were maintained remarkably well during salinity stress in roots and shoots. Likewise, proteins in germinating embryos were stable except for a 42-kilodalton protein unique to the salt tolerant genotype which was apparently degraded during salinity stress. Salinity, around 0.34 kmol m?3 NaCl, induced both quantitative and qualitative changes in the expression of some proteins labelled in vivo. The quantitative changes included repression or enhancement of synthesis of selected groups of proteins. Around 8% of the nearly 400 resolved proteins in a tissue was affected this way. Some of the proteins in this category were specific to each genotype. About 1 % of the total showed qualitative changes; these proteins were expressed only during salinity stress. In roots, two proteins (28, 41.7 kilodaltons) were detected in CM72 and five (28, 45, 60.5, 76.5, 82.5 kilodaltons) in Prato; only the 28-kilodalton protein was common to both genotypes. In shoots, four proteins (45, 60.5, 76.5, 82.5 kilodaltons) were found only in Prato and these were similar to those induced in roots. The four new proteins (32, 37.5, 89, 92 kilodaltons) in germinating embryos were apparently induced only in CM72; these were distinctly different from those detected in developed roots and shoots. The unique protein changes induced by salinity stress during germination (this study) and seedling growth studies reported earlier (Ramagopal, 1987b) are apparently different. The findings demonstrate that ontogeny plays an important role in the expression of tissue-specific proteins during salinity stress in the salt tolerant and sensitive barley genotypes.  相似文献   

8.
Low phosphorus (LP) causes a dramatic change of root system architecture in plants, which is possibly mediated by signaling pathways of hormones. In order to understand the regulatory mechanisms of the root development under LP, we examined the potential role of phytohormones in response to LP using three barley genotypes, differing in LP tolerance, namely 2 Tibetan wild barley genotypes XZ99 (LP tolerant) and XZ100 (LP sensitive), and a cultivated barley ZD9 (LP moderately tolerant). The results showed that LP stress caused a number of changes in root development, with XZ99 having less primary root growth inhibition, more lateral root and root hair formation than the other two genotypes. Meanwhile, LP stress also resulted in the dramatic changes in plant hormone contents, with changed extent and pattern differing among the three genotypes. The relative expression of genes responsible for indole acetic acid (IAA) and ethylene synthesis in roots also showed a significant difference among genotypes in both control and LP conditions. It can be concluded that the root system of Tibetan wild barley XZ99 adapts to phosphorus deficiency by changing the signal transduction pathway mediated by auxin, ethylene and cytokinins. However, further studies are needed to elucidate the behaviors of the key genes involved in the hormone-related response.  相似文献   

9.
Ion homeostasis is considered to be one of the most important mechanisms underlying salt stress tolerance. We used the Steptoe × Morex barley doubled haploid population to screen for genetic variation in response to salinity stress at an early development stage in a hydroponics system, focusing on ion homeostasis. Salinity induced a strong adverse effect on growth of the parents and their derived population, with Steptoe as the more tolerant parent. Steptoe maintained higher concentrations of K+, Na+ and Cl? in the roots and a similar shoot/root ion ratio (<1) under stress conditions compared to control conditions. In contrast, Morex had higher concentrations of these ions in the shoots under stress and a doubled shoot/root ion ratio relative to control conditions, indicating that salt exclusion might contribute to the higher tolerance of Steptoe. Correlation and path analysis demonstrated that shoot Cl? contents most strongly affected salt tolerance and suggest that both Na+ and Cl? contents are important for salinity stress tolerance in barley. We identified 11 chromosomal regions involved in the control of the variation observed for salt tolerance and various salt stress response traits, including Na+, Cl? and K+ contents in shoots. Two specific regions on chromosomes 2H and 3H were found controlling ion contents and salt tolerance, pointing to genes involved in ion homeostasis that contribute to salt tolerance.  相似文献   

10.
Plants adopt several strategies for fighting against low potassium (LK) stress. Our previous study identified some Tibetan wild barley accessions which show the higher LK tolerance than cultivated barley. However, the physiological mechanisms underlying the wild barley are not well understood. In this study, growth performance, elements content, SPAD value, photosynthetic parameters, and ATPase activities were measured to investigate the effect of LK stress on the two wild barley genotypes (XZ153 and XZ141) and one barley cultivar (ZD9) differing in LK tolerance. The results revealed that LK stress inhibited barley growth and induced reduction in dry weight, with XZ153 being least inhibited. Moreover, XZ153 had less reduction in photosynthetic rate, SPAD value, and K concentrations in the younger leaves under LK stress compared to the other two genotypes. Although the activities of H+/K+-ATPase and Ca2+/Mg2+-ATPase were increased significantly in all three genotypes in response to LK, the highest H+/K+-ATPase activity was observed in XZ153. The current results indicate that higher LK tolerance of XZ153 is partly attributed to its high capacity of transferring K from the old leaves to younger ones.  相似文献   

11.
ABSTRACT

The differences in salt tolerance between Hordeum maritimum and H. murinum were studied. Seeds were collected at horn maturity from wild populations growing respectively near the Orbetello Lagoon and S. Piero a Grado (Tuscany, Italy) and were used in germination and growth tests at increasing salinity (NaCl) levels. H. maritimum was confirmed to be a true halophyte as compared to H. murinum, which exhibited germination behavior typical of many wild glycophytes. The higher salt sensitivity of H. murinum compared to H. maritimum was also shown by its shoot length values, which decreased only in H. murinum, albeit in 100 mM NaCl treatment. The higher degree of salt tolerance of H. maritimum is further demonstrated by the Na : K ratio. H. maritimum can accumulate a greater amount of sodium than potassium in both roots and shoots, even in the absence of salt treatment. However, in NaCl solutions H. maritimum showed a higher Na : K ratio for shoots — an index of better uptake and translocation of sodium to leaves — as has been demonstrated for many halophyte includers. These results thus help to enhance knowledge on wild relatives of barley, whose potential contribution to genetic improvement in salinity tolerance has previously not been thoroughly explored.  相似文献   

12.
Additive effects of Na+ and Cl- ions on barley growth under salinity stress   总被引:3,自引:0,他引:3  
Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. It has previously been suggested that Cl(-) toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na(+) and Cl(-) reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na(+), Cl(-), and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na(+) and Cl(-) stress. The results demonstrated that Na(+) and Cl(-) exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na(+) reduced K(+) and Ca(2+) uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl(-) concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.  相似文献   

13.
14.
To investigate key regulatory components and genes with great impact on salt tolerance, near isogenic or mutant lines with distinct salinity tolerance are suitable genetic materials to simplify and dissect the complex genes networks. In this study, we evaluated responses of a barley mutant genotype (73-M4-30), in comparison with its wild-type background (Zarjou) under salt stress. Although the root growth of both genotypes was significantly decreased by exposure to sodium chloride (NaCl), the effect was greater in the wild type. The chlorophyll content decreased under salt stress for the wild type, but no change occurred in the mutant. The mutant maintained the steady-state level of [K+] and significantly lower [Na+] concentrations in roots and higher [K+]/[Na+] ratio in shoots under salt conditions. The catalase (CAT), peroxidase (POD) activity, and proline content were higher in the mutant than those in the wild type under controlled conditions. The soluble proline was higher after 24 h of salt stress in roots of the mutant but was higher after 96 h of salt stress in the wild type. The CAT and POD activity of the mutant increased under salt stress which was as a coincidence to lower levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. The ratio of dry-to-fresh weight of the roots increased for the mutant under salt stress which was as a result of the higher phenylalanine ammonia-lyase (PAL) gene expression and peroxidase activity and involved in cell wall lignification. Consequently, it seems that ion homeostasis and increased peroxidase activity have led to salt tolerance in the mutant’s genotype.  相似文献   

15.
Physiological and biochemical responses of Hordeum maritimum and H. vulgare to salt stress were studied over a 60‐h period. Growth at increasing salinity levels (0, 100, 200 and 300 mM NaCl) was assessed in hydroponic culture. H. maritimum was shown to be a true halophyte via its typical behaviour at high salinity. Shoot growth of cultivated barley was gradually reduced with increasing salinity, whereas that of wild barley was enhanced at 100 and 200 mm NaCl then slightly reduced at 300 mM NaCl. The higher salt tolerance of H. maritimum as compared to H. vulgare was due to its higher capacity to maintain cell turgor under severe salinity. Furthermore, H. maritimum exhibited fine regulation of Na+ transport from roots to shoots and, unlike H. vulgare, it accumulated less Na+ in shoots than in roots. In addition, H. maritimum can accumulate more Na+ than K+ in both roots and shoots without the appearance of toxicity symptoms, indicating that Na+ was well compartmentalized within cells and substituted K+ in osmotic adjustment. The higher degree of salt tolerance of H. maritimum is further demonstrated by its economic strategy: at moderate salt treatment (100 mm NaCl), it used inorganic solutes (such as Na+) for osmotic adjustment and kept organic solutes and a large part of the K+ for metabolic activities. Indeed, K+ use efficiency in H. maritimum was about twofold that in H. vulgare; the former started to use organic solutes as osmotica only at high salinity (200 and 300 mm NaCl). These results suggest that the differences in salt tolerance between H. maritimum and H. vulgare are partly due to (i) differences in control of Na+ transport from roots to shoots, and (ii) H. maritimum uses Na+ as an osmoticum instead of K+ and organic solutes. These factors are differently reflected in growth.  相似文献   

16.
植物盐胁迫应答蛋白质组学分析   总被引:3,自引:0,他引:3  
张恒  郑宝江  宋保华  王思宁  戴绍军 《生态学报》2011,31(22):6936-6946
土壤盐渍化是限制植物生长和分布的关键因素之一,揭示植物盐胁迫应答的分子机理是借助分子生物学手段提高植物耐盐性的基础.近年来,人们利用高通量蛋白质组学技术分析了拟南芥、水稻等19种植物的盐胁迫应答蛋白质表达图谱.从植物类群(盐生植物和甜土植物)、组织器官(根、地上部分/茎、胚根和胚轴、叶片、花序和配子体)、细胞(悬浮培养细胞、愈伤组织细胞和单细胞生物)和亚细胞结构(叶绿体、质膜和质外体)几方面整合分析了植物盐胁迫应答蛋白质组表达模式特征,主要特征包括:(1)盐生植物通过全面调节细胞骨架重塑、离子转运和区隔化、渗透平衡、活性氧(ROS)清除、信号转导、光合作用和能量代谢等信号与代谢网络体系,获得相对较高的抗/耐盐能力;(2)植物地上部分(叶片、茎、配子体)或光合组织细胞(悬浮培养细胞、愈伤组织细胞和单细胞盐藻)通过调节参与光合作用、碳和能量代谢、ROS清除过程蛋白质的表达模式应对盐胁迫环境;(3)植物地下部分(根、胚根)通过调控信号转导和离子转运相关蛋白质感知/传递盐胁迫信号并维持离子平衡;(4)花序中参与渗透调节、转录调控、蛋白质加工和ROS清除的蛋白质在盐胁迫条件下变化显著;(5)叶绿体通过调控参与光合作用、蛋白质加工和周转,以及氧化还原系统平衡等过程应对盐胁迫;(6)质外体中参与细胞壁代谢、胁迫防御和信号转导过程的蛋白质受盐胁迫影响明显;(7)细胞膜中参与维持膜结构稳定、物质/离子运输和信号转导过程的蛋白质对植物盐胁迫应答具有重要作用.这些分析为深入研究植物耐盐的分子机制提供了重要信息.  相似文献   

17.
18.
Accumulation of an osmoprotectant, proline, is enhanced in response to salinity in plants. Here, by immunohistochemical analysis, we demonstrated that proline transporter (HvProT) was highly expressed in the apical region of barley roots under salt stress. Free proline was accumulated more in the basal region than in the apical region of barley roots under salt stress, although expression level of HvProT was higher in the apical region. On the other hand, salt stress increased proline and hydroxyproline contents in the cell wall fraction of the root apical region, suggesting increment of proline utilization. Expression of the genes encoding cell wall proteins (proline rich protein and extensin) and cellulose synthase was induced in barley roots by salt stress. These findings indicated that free proline transported by HvProT presumably behaved as a component of cell wall synthesis in the apical region of barley roots under salt stress.  相似文献   

19.
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt‐stress‐tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3‐O‐methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.  相似文献   

20.
Although the physiological consequences of plant growth under saline conditions have been well described, understanding the core mechanisms conferring plant salt adaptation has only started. We target the root plasma membrane proteomes of two barley varieties, cvs. Steptoe and Morex, with contrasting salinity tolerance. In total, 588 plasma membrane proteins were identified by mass spectrometry, of which 182 were either cultivar or salinity stress responsive. Three candidate proteins with increased abundance in the tolerant cv. Morex were involved either in sterol binding (a GTPase‐activating protein for the adenosine diphosphate ribosylation factor [ZIGA2], and a membrane steroid binding protein [MSBP]) or in phospholipid synthesis (phosphoethanolamine methyltransferase [PEAMT]). Overexpression of barley MSBP conferred salinity tolerance to yeast cells, whereas the knock‐out of the heterologous AtMSBP1 increased salt sensitivity in Arabidopsis. Atmsbp1 plants showed a reduced number of lateral roots under salinity, and root‐tip‐specific expression of barley MSBP in Atmsbp1 complemented this phenotype. In barley, an increased abundance of MSBP correlates with reduced root length and lateral root formation as well as increased levels of auxin under salinity being stronger in the tolerant cv. Morex. Hence, we concluded the involvement of MSBP in phytohormone‐directed adaptation of root architecture in response to salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号