首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted in hamsters to determine whether the phase response curve (PRC) to injections of the short-acting benzodiazepine triazolam is a fixed or a labile property of the circadian clock. The results indicated that (1) both the shape and the amplitude of the PRC to triazolam generated on the first day of transfer from a light-dark cycle (LD 14:10) to constant darkness (DD) (i.e., PRCLD) were different from those of the PRC generated after many days in DD (PRCDD); and (2) the phase-shifting effects of triazolam on the activity rhythms of hamsters transferred from LD 14:10 or 12:12 to DD changed dramatically within the first 8-9 days spent in DD. In an attempt to accelerate the resynchronization of the circadian clock of hamsters subjected to an 8-hr advance in the LD cycle, triazolam was given to the animals at a time selected on the basis of the characteristics of PRCLD. The activity rhythms of five of eight triazolam-treated animals were resynchronized to the new LD cycle within 2-4 days after the shift, whereas those of most of the control animals were resynchronized 21-29 days after the shift. These findings suggest that attempts to use pharmacological or nonpharmacological tools to phase-shift circadian clocks under entrained conditions should take into account information derived from PRCs generated at the time of transition from entrained to free-running conditions.  相似文献   

2.
The circadian mutation duper in Syrian hamsters shortens the free-running circadian period (τ(DD)) by 2 hours when expressed on a tau mutant (τ(ss)) background and by 1 hour on a wild-type background. We have examined the effects of this mutation on phase response curves and entrainment. In contrast to wild types, duper hamsters entrained to 14L:10D with a positive phase angle. Super duper hamsters (expressing duper on a τ(ss) background) showed weak entrainment, while τ(ss) animals either completely failed to entrain or showed sporadic entrainment with episodes of relative coordination. As previously reported, wild-type and τ(ss) hamsters show low amplitude resetting in response to 15-minute light pulses after short-term (10 days) exposure to DD. In contrast, super duper hamsters show high amplitude resetting. This effect is attributable to the duper allele, as hamsters carrying duper on a wild-type background also show large phase shifts. Duper mutants that were born and raised in DD also showed high amplitude resetting in response to 15-minute light pulses, indicating that the effect of the mutation on PRC amplitude is not an aftereffect of entrainment to 14L:10D. Hamsters that are heterozygous for duper do not show amplified resetting curves, indicating that for this property, as for determination of free-running period, the mutant allele is recessive. In a modified Aschoff type II protocol, super duper and duper hamsters show large phase shifts as soon as the second day of DD. Despite the amplification of the PRC in super duper hamsters, the induction of Period1 gene expression in the SCN by light is no greater in these mutants than in wild-type animals. Period2 expression in the SCN did not differ between super duper and wild-type hamsters exposed to light at CT15, but albumin site D-binding protein (Dbp) mRNA showed higher basal levels and greater light induction in the SCN of super duper compared to wild-type animals. These results indicate that the duper mutation alters the amplitude of the circadian oscillator and further distinguish it from the tau mutation.  相似文献   

3.
The adjustment of hamsters to advanced light-dark (LD) cycles can be greatly accelerated by scheduling a single 3-hr bout of extra activity in a novel running wheel, starting about 7 hr before the time when the animals become active in the preceding LD cycle. The present experiments were designed to provide stronger evidence that this effect depends on a shift in the pacemaker rather than on masking. It was shown that when hamsters were put into continuous darkness (DD) 1 day after the exercise-accelerated phase shift, their free-running rhythms took off from a time nearer to the onset of darkness in the new LD cycle than in the preceding LD cycle. An incidental finding was that in DD the free-running period of the hamsters with the accelerated phase shifts was longer than that of the control animals. Further evidence that the 3-hr exercise pulse had produced a greater phase advance than that occurring in undisturbed control animals was obtained by giving a light pulse at the same clock time to all animals after they had been in DD for 8 days. The animals that had previously exercised for the additional 3-hr phase-advanced in response to the light pulse, while the undisturbed control animals phase-delayed.  相似文献   

4.
Stimuli that evoke behavioral activation can phase-shift free-running circadian activity rhythms in Syrian hamsters. Activation-induced phase shifting is characterized by a phase-response curve (PRC) that is dissimilar to the PRC for photic phase shifting, and recent studies indicate that complex interactions may occur between photic and non-photic phase shifting. Since animals in the laboratory may be exposed to both photic and behaviorally activating stimulation during routine cage maintenance procedures, we performed a retrospective analysis of possible phase shifts associated with cage cleaning in individually housed hamsters maintained in either constant darkness (DD) or dim red light (RR) during the course of an ongoing study of drug-induced phase shifting. All cage cleanings were conducted under RR and were separated from drug treatments by at least one week. The results indicated that both photic and non-photic phase shifts could be induced by routine cage maintenance procedures, depending on the circadian timing of the procedure, on lighting conditions, and on the degree of evoked activity.  相似文献   

5.
Stimuli that evoke behavioral activation can phase-shift free-running circadian activity rhythms in Syrian hamsters. Activation-induced phase shifting is characterized by a phase-response curve (PRC) that is dissimilar to the PRC for photic phase shifting, and recent studies indicate that complex interactions may occur between photic and non-photic phase shifting. Since animals in the laboratory may be exposed to both photic and behaviorally activating stimulation during routine cage maintenance procedures, we performed a retrospective analysis of possible phase shifts associated with cage cleaning in individually housed hamsters maintained in either constant darkness (DD) or dim red light (RR) during the course of an ongoing study of drug-induced phase shifting. All cage cleanings were conducted under RR and were separated from drug treatments by at least one week. The results indicated that both photic and non-photic phase shifts could be induced by routine cage maintenance procedures, depending on the circadian timing of the procedure, on lighting conditions, and on the degree of evoked activity.  相似文献   

6.
Djungarian hamsters bred at the authors' institute reveal two distinct circadian phenotypes, the wild-type (WT) and DAO type. The latter is characterized by a delayed activity-onset, probably due to a deficient mechanism for photic entrainment. Experiments with zeitgeber shifts have been performed to gain further insight into the mechanisms underlying this phenomenon. Advancing and delaying phase shifts were produced by a single lengthening or shortening of the dark (D) or light (L) time by 6?h. Motor activity was recorded by passive infrared motion detectors. All WT hamsters re-entrained following various zeitgeber shifts and nearly always in the same direction as the zeitgeber shift. On the other hand, a considerable proportion of the DAO animals failed to re-entrain and showed, instead, diurnal, arrhythmic, or free-running activity patterns. All but one of those hamsters that re-entrained did so by delaying their activity rhythm independently of the direction of the LD shift. Resynchronization occurred faster following a delayed than an advanced shift and also after changes of D rather than L. WT animals tended to re-entrain faster, particularly following a zeitgeber advance (where DAO hamsters re-entrained by an 18-h phase delay instead of a 6-h phase advance). However, the difference between phenotypes was statistically significant only with a shortening of L. To better understand re-entrainment behavior, Type VI phase-response curves (PRCs) were constructed. To do this, both WT and DAO animals were kept under LD conditions, and light pulses (15 min, 100 lux) were applied at different times of the dark span. In WT animals, activity-offset always showed phase advances, whereas activity-onset was phase delayed by light pulses applied during the first half of the dark time and not affected by light pulses applied during the second half. When the light pulse was given at the beginning of D, activity-onset responded more strongly, but light pulses given later in D produced significant changes only in activity-offset. In accord with the delayed activity-onset in DAO hamsters, no or only very weak phase-responses were observed when light pulses were given during the first hours of D. However, the second part of the PRCs was similar to that of WT hamsters, even though it was compressed to an interval of only a few hours and the shifts were smaller. Due to these differences, the first light-on or light-off following an LD shift fell into different phases of the PRC and thus caused different re-entrainment behavior. The results show that it is not only steady-state entrainment that is compromised in DAO hamsters but also their re-entrainment behavior following zeitgeber shifts. (Author correspondence: weinert@zoologie.uni-halle.de)  相似文献   

7.
Circadian rhythms of hamsters can be phase-shifted or entrained by single or daily sessions of induced wheel running. In contrast, observations of rats under restricted-feeding schedules suggest that their free-running rhythms are not readily entrainable by a daily bout of intense activity. A formal test of this idea was made by subjecting rats to daily 2-hr or 3-hr sessions of forced treadmill activity. None of 18 rats entrained to a daily treadmill schedule when tested in constant dim light, but 1 of 16 did entrain when tested after blinding, when the period of its free-running activity rhythm was very close to the period of the treadmill schedule and when the onset of its daily active phase overlapped with the treadmill sessions. These conditions were recreated in a final group of eight rats; the rats were trained in a light-dark cycle, blinded, and subjected to a treadmill schedule with a period of 23.91 hr that was initiated at the onset of the rats' active phase on day 1. Six of these rats entrained. The mechanism for entrainment by activity schedules clearly exists in rats, but the conditions under which this occurs are highly constrained, suggesting that activity is a very weak zeitgeber in this species. It is argued that the evolution of functionally separable food- and light-entrainable oscillators in the rat demands a very low sensitivity to feedback effects of activity.  相似文献   

8.
Djungarian hamsters bred at the authors' institute reveal two distinct circadian phenotypes, the wild-type (WT) and DAO type. The latter is characterized by a delayed activity-onset, probably due to a deficient mechanism for photic entrainment. Experiments with zeitgeber shifts have been performed to gain further insight into the mechanisms underlying this phenomenon. Advancing and delaying phase shifts were produced by a single lengthening or shortening of the dark (D) or light (L) time by 6?h. Motor activity was recorded by passive infrared motion detectors. All WT hamsters re-entrained following various zeitgeber shifts and nearly always in the same direction as the zeitgeber shift. On the other hand, a considerable proportion of the DAO animals failed to re-entrain and showed, instead, diurnal, arrhythmic, or free-running activity patterns. All but one of those hamsters that re-entrained did so by delaying their activity rhythm independently of the direction of the LD shift. Resynchronization occurred faster following a delayed than an advanced shift and also after changes of D rather than L. WT animals tended to re-entrain faster, particularly following a zeitgeber advance (where DAO hamsters re-entrained by an 18-h phase delay instead of a 6-h phase advance). However, the difference between phenotypes was statistically significant only with a shortening of L. To better understand re-entrainment behavior, Type VI phase-response curves (PRCs) were constructed. To do this, both WT and DAO animals were kept under LD conditions, and light pulses (15 min, 100 lux) were applied at different times of the dark span. In WT animals, activity-offset always showed phase advances, whereas activity-onset was phase delayed by light pulses applied during the first half of the dark time and not affected by light pulses applied during the second half. When the light pulse was given at the beginning of D, activity-onset responded more strongly, but light pulses given later in D produced significant changes only in activity-offset. In accord with the delayed activity-onset in DAO hamsters, no or only very weak phase-responses were observed when light pulses were given during the first hours of D. However, the second part of the PRCs was similar to that of WT hamsters, even though it was compressed to an interval of only a few hours and the shifts were smaller. Due to these differences, the first light-on or light-off following an LD shift fell into different phases of the PRC and thus caused different re-entrainment behavior. The results show that it is not only steady-state entrainment that is compromised in DAO hamsters but also their re-entrainment behavior following zeitgeber shifts.  相似文献   

9.
Maternal entrainment of the circadian wheel-running activity rhythm was examined in Syrian hamsters heterozygous for a single gene mutation (tau) that affects the free-running period of circadian rhythms. Heterozygous tau pups were born to and raised by wild-type mothers under constant dim light. The pups' wheel-running activity was recorded after weaning on postnatal day 18 or 24. Pups weaned on day 18 had an average free-running period of 21.70 hr, demonstrating that the tau phenotype was fully expressed at this age. Using the activity onset of the postnatal free-running rhythms as a phase reference, we estimated the phase relationships between the pups and their mothers on days 18 and 24. In contrast to results with wild-type pups, the activity rhythms of tau pups were not in phase with the rhythms of their wild-type mothers; that is, activity onsets of mothers and pups did not coincide. The pups did, however, show synchrony among themselves, indicating that they had been exposed to a synchronizing signal sometime during development. It is likely that this synchronizing signal was provided by the mothers, since pups from different litters showed phase relationships similar to those of their mothers. Thus the mothers provided a signal that was sufficient to cause entrainment, despite the 2-hr difference in free-running period between the mothers and pups. Although the pups' activity rhythms appeared to have been entrained by the mothers, they were clearly free-running by postnatal day 18. The mechanism for entrainment is lost during the course of development, despite continued interaction between the mothers and pups.  相似文献   

10.
The wheel-running activity rhythm of tree shrews (tupaias; Tupaia belangeri) housed in constant darkness (DD) phase-advanced following a 3-hr light pulse at circadian time (CT) 21. Dark pulses of 3 hr presented to tupaias in bright constant light (LL) did not induce significant phase shifts of the free-running activity rhythm, irrespective of the CT. In dim LL, tupaias showed simultaneous splitting of their circadian rhythm of wheel-running activity, nest-box activity, and feeding behavior. Light pulses of 6 hr and 2300 lux were presented to 13 tupaias with split wheel-running activity rhythms. These light pulses induced immediate phase shifts in the two components of the split rhythm in opposite directions. No differences were observed between the light-pulse phase response curves of the two components. Equally large immediate phase advances were induced in both components by light pulses of 230 lux, but not by 23 lux. The final phase shifts were small at all CTs. In two tupaias, activity rhythms transiently split and re-fused. Analysis of the relative position of the components in one of these indicates asymmetry in the coupling between the components.  相似文献   

11.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms.  相似文献   

12.
We have investigated the effects of destruction of the geniculo-hypothalamic tract (GHT) on the circadian system of golden hamsters. In the first experiment, intact hamsters were housed in constant darkness, and phase shifts in running-wheel activity rhythms were assessed following 15-min light pulses administered at circadian time (CT) 12 (defined as the beginning of activity), CT 14, CT 18, and CT 20. Responses to light pulses at the same CTs were then reassessed after GHT lesions. Hamsters with complete lesions showed decreases in phase advances caused by light pulses at CT 18 and CT 20. Phase delays elicited by light at CT 12 and CT 14 were not altered. In a second study, intact and GHT-ablated hamsters housed in constant light received 6-hr dark pulses at various CTs. Hamsters with complete GHT ablation showed smaller advances than controls to dark pulses centered on CT 8-10. After 110 days in constant light, 7 of 10 intact hamsters showed splitting of their activity rhythms into two components, while only 1 of the 8 similarly treated ablated hamsters displayed dissociated activity components. Ablated hamsters had significantly shorter free-running periods during the first 35 days of exposure to constant light than did the intact hamsters. These results demonstrate that destruction of the GHT in the hamster alters phase shifting in response to periods of light or dark, and they indicate a role for the GHT in mediating several photic effects on the circadian system.  相似文献   

13.
Sex differences have been identified in a variety of circadian rhythms, including free-running rhythms, light-induced phase shifts, sleep patterns, hormonal fluctuations, and rates of reentrainment. In the precocial, diurnal rodent Octodon degus, sex differences have been found in length of free-running rhythm (tau), phase response curves, rates of reentrainment, and in the use of social cues to facilitate reentrainment. Although gonadal hormones primarily organize circadian rhythms during early development, adult gonadal hormones have activational properties on various aspects of circadian rhythms in a number of species examined. Gonadectomy of adult female O. degus did not influence tau, phase angle of entrainment, or activity patterns in previous experiments. The present experiment examined the role of gonadal hormones in adult male degus' circadian wheel-running rhythms. We predicted that male gonadal hormones would have an activational effect on some aspects of circadian rhythms, particularly those in which we see sex differences. Phase angles of entrainment, tau, length of the active period (alpha), maximum and mean activity levels, and activity amplitude were examined for intact and castrated males housed in LD 12:12. Responses to light pulses while housed in constant darkness (DD) were also compared. Castration had no significant effect on tau or light-induced phase shifts. However, castration significantly increased phase angle of entrainment and decreased activity levels. The data indicate that adult gonadal steroids are not responsible for the sex differences in endogenous circadian mechanisms of O. degus (tau, PRC), although they influence activity level and phase angle of entrainment. This is most likely due to masking properties of testosterone, similar to the activity-increasing effects of estrogen during estrus in O. degus females.  相似文献   

14.
Summary Bouts of induced wheel-running, 3 h long, accelerate the rate of re-entrainment of hamsters' activity rhythms to light-dark (LD) cycles that have been phase-advanced by 8 h (Mrosovsky and Salmon 1987). The bouts of running are given early in the first night of the new LD cycle, and by the second night the phase advance in activity onset already averages 7 h. Such large shifts contrast with the mean phase advance of <1 h at the peak of the phase response curve when hamsters in constant darkness (DD) experience 2-h pulses of induced activity (Reebs and Mrosovsky 1989). The present paper investigates pulse duration and light as possible causes for the discrepancy in shift amplitude between these two studies. In a first experiment, pulses of induced wheel-running 1 h, 3 h, or 5 h long were given at circadian times (CT) 6 and 22-2 to hamsters free-running in DD. Pulses given at CT 6 caused phase-advances of up to 2.8 h, whereas pulses at CT 22-2 resulted in delays of up to 1.0 h. Shifts after 3-h and 5-h pulses did not differ, but were larger than after 1-h pulses, and larger than after the 2-h pulses given in DD by Reebs and Mrosovsky (1989). Thus 3 h appears to be the minimum pulse duration necessary to obtain maximum phase-shifting effects. In a second experiment, the re-entrainment design of Mrosovsky and Salmon (1987) was repeated with the light portion of the shifted LD cycle eliminated. Hamsters exercised for 3 h phase-advanced 2.9 h on average (excluding 2 animals who ran poorly). When the same hamsters were exposed 7 days later to a 14-h light pulse starting 5 h after their activity onset, they advanced by an average of 3.3 h. Adding the average values for activity-induced shifts and light-induced shifts gives a total of about 6 h. Possible synergism between the effects of induced activity and those of light may account for the remaining small difference between this total and the 7-h advances previously reported.Abbreviations CT circadian time - DD constant darkness - LD light-dark - PRC phase response curve - free-running period of rhythm  相似文献   

15.
The effect of exogenous melatonin (1 mg/kg) on light pulse (LP) induced phase shifts of the circadian locomotor activity rhythm was studied in the nocturnal field mouse Mus booduga. Three phase response curves (PRCs: LP, control, and experimental) were constructed to study the effect of co-administration of light and melatonin at various circadian times (CTs). The LP PRC was constructed by exposing animals free-running in constant darkness (DD) to LPs of 100-lux intensity and 15-min duration, at various CTs. The control and experimental PRCs were constructed by using a single injection of either 50% DMSO or melatonin (1 mg/kg dissolved in 50% DMSO), respectively, administered 5 min before LPs, to animals free-running in DD. A single dose of melatonin significantly modified the waveform of the LP PRC. The experimental PRC had significantly larger areas under advance and delay regions of the PRC compared to the control PRC. This was also confirmed when the phase shifts obtained at various CTs were compared between the three PRCs. The phase delays at three phases (CT12, CT14, and CT16) of the experimental PRCs were significantly greater than those of the control and the LP PRCs. Based on these results we conclude that phase shifting effects of melatonin and light add up to produce larger responses.  相似文献   

16.
To investigate the role of non-parametric light effects in entrainment, Djungarian hamsters of two different circadian phenotypes were exposed to skeleton photoperiods, or to light pulses at different circadian times, to compile phase response curves (PRCs). Wild-type (WT) hamsters show daily rhythms of locomotor activity in accord with the ambient light/dark conditions, with activity onset and offset strongly coupled to light-off and light-on, respectively. Hamsters of the delayed activity onset (DAO) phenotype, in contrast, progressively delay their activity onset, whereas activity offset remains coupled to light-on. The present study was performed to better understand the underlying mechanisms of this phenomenon. Hamsters of DAO and WT phenotypes were kept first under standard housing conditions with a 14:10 h light–dark cycle, and then exposed to skeleton photoperiods (one or two 15-min light pulses of 100 lx at the times of the former light–dark and/or dark–light transitions). In a second experiment, hamsters of both phenotypes were transferred to constant darkness and allowed to free-run until the lengths of the active (α) and resting (ρ) periods were equal (α:ρ = 1). At this point, animals were then exposed to light pulses (100 lx, 15 min) at different circadian times (CTs). Phase and period changes were estimated separately for activity onset and offset. When exposed to skeleton-photoperiods with one or two light pulses, the daily activity patterns of DAO and WT hamsters were similar to those obtained under conditions of a complete 14:10 h light–dark cycle. However, in the case of giving only one light pulse at the time of the former light–dark transition, animals temporarily free-ran until activity offset coincided with the light pulse. These results show that photic entrainment of the circadian activity rhythm is attained primarily via non-parametric mechanisms, with the “morning” light pulse being the essential cue. In the second experiment, typical photic PRCs were obtained with phase delays in the first half of the subjective night, phase advances in the second half, and a dead zone during the subjective day. ANOVA indicated no significant differences between WT and DAO animals despite a significantly longer free-running period (tau) in DAO hamsters. Considering the phase shifts induced around CT0 and the different period lengths, it was possible to model the entrainment patterns of both phenotypes. It was shown that light-induced phase shifts of activity offset were sufficient to compensate for the long tau in WT and DAO hamsters, thus enabling a stable entrainment of their activity offsets to be achieved. With respect to activity onsets, phase shifts were sufficient only in WT animals; in DAO hamsters, activity onset showed increasing delays. The results of the present paper clearly demonstrate that, under laboratory conditions, the non-parametric component of light and dark leads to circadian entrainment in Djungarian hamsters. However, a stable entrainment of activity onset can be achieved only if the free-running period does not exceed a certain value. With longer tau values, hamsters reveal a DAO phenotype. Under field conditions, therefore, non-photic cues/zeitgebers must obviously be involved to enable a proper circadian entrainment.  相似文献   

17.
Social interactions between conspecifics is a type of nonphotic zeitgeber common to several species. In the diurnal rodent Octodon degus, social interactions enhance reentrainment after phase shifts and can act as a weak zeitgeber. Olfactory stimuli appear necessary for these effects since bulbectomy eliminates socially enhanced reentrainment. In Experiment 1, the authors examined whether stimulation of the main olfactory system was sufficient to enhance reentrainment after 6-h phase advances and delays in the adult female O. degus. When test animals received conspecific odor cues during reentrainment, they entrained 39% faster after phase advances (p < 0.05) and 33% faster after phase delays (p < 0.001) than when they did not receive odor cues. Thus, olfactory cues from distant female donors were sufficient to enhance rates of entrainment in female O. degus and provided results equivalent to earlier studies with donors and shifters housed in the cages together. In Experiment 2, the authors examined whether discrete 3-h and 1-h daily pulses of airborne odors from a group of 5 entrained female degus would be sufficient to produce entrainment of wheel-running activity in adult female conspecifics. During the period of exposure to 3-h pulses, 50% (4/8) of the subjects temporarily entrained to a 24-h cycle, while 12.5% (1/8) of the subjects fully entrained. Exposure to 1-h pulses allowed 37.5% (3/8) of the subjects to temporarily entrain and 12.5% (1/8) of the subjects to fully entrain. Duration of entrained episodes was positively correlated with psi, daily onset of activity with respect to the timing of odor exposure (Pearson r = 0.731; p < 0.05), such that animals with the entraining odor pulse beginning during subjective day (psi = 7.8 h, CT 7.8 +/- 1.4) had longer periods of entrainment (22.2 +/- 5.6 days) than animals with the entraining pulse occurring during subjective night (psi = -4.6 h; CT 19.4 +/- 0.9; 5.6 +/- 0.9 days; p < 0.001). In addition, for each animal, the combined duration of all episodes of 24-h entrainment correlated with increased period length (tau) of free-running rhythms (Pearson r = 0.733; p < 0.05). Thus, daily discrete pulses of odors with durations of either 1 or 3 h from female conspecifics were sufficient to produce both temporary and full entrainment to a 24-h cycle in the majority of female O. degus, and the likelihood of long periods of entrainment correlated with long taus and coordination of the odor pulse with mid subjective day.  相似文献   

18.
Periodic food availability can act as a potent zeitgeber capable of synchronizing many biological rhythms in fishes, including locomotor activity rhythms. In the present paper we investigated entrainment of locomotor rhythms to scheduled feeding under different light and feeding regimes. In experiment 1, fish were exposed to a 12:12?h light/dark cycle and fed one single daily meal in the middle of the light phase. In experiment 2, we tested the effect of random versus scheduled feeding on the daily distribution of activity. During random feeding, meals were randomly scheduled with intervals ranging from 12 to 36?h, while scheduled feeding consisted of one single daily meal set in the middle of the light or dark phase. Finally, in experiment 3, we studied the synchronization of activity rhythms to feeding under constant darkness (DD) and after shifting the feeding cycle by either advancing or delaying the feeding cycle by 9?h. The results revealed that goldfish synchronized to feeding, overcame light entrainment and significantly changed their daily distribution of activity according to their feeding schedule. In addition, the daily activity pattern modulated by feeding differed between layers: a peak of activity being noticeable directly after feeding at the bottom, while an anticipatory behaviour was obvious at the surface of the tank. Under DD and no food, free-running rhythms averaging 25.5?± 1.9?h (mean?±?SD) were detected. In conclusion, some properties of feeding entrainment (e.g. anticipation of the feeding time, free-running rhythms following termination of periodic feeding, and the stability of ø after shifting the feeding cycle) suggested that goldfish have (a) separate but tightly coupled light- and food-entrainable oscillators, or (b) a single oscillator that is entrainable by both light and food (one synchronizer being eventually stronger than the other).  相似文献   

19.
Autoradiographic studies using [125I]iodomelatonin in several species, including the Syrian hamster, have revealed that the rostral region of the anterior paraventricular nucleus of the thalamus (aPVT) contains a very high density of binding sites for melatonin. In two studies, small or large bilateral electrolytic lesions of the aPVT were made in adult male hamsters maintained on long days (LD 16:8). The hamsters were then transferred to short days (LD 8:16) to test whether testicular regression could occur in response to a decrease in photoperiod. Serum prolactin concentrations were measured as a second photoperiodic response. All unoperated control hamsters showed the typical short-day photoperiodic response: A decrease in serum luteinizing hormone (LH) and prolactin concentrations and testicular regression all occurred within 6 weeks in short days, followed by the development of scotorefractoriness. Lesions of the aPVT did not significantly affect the rate or the degree of the short-day-induced decline in serum levels of LH or prolactin, nor the pattern of testicular regression and the subsequent expression of refractoriness. To enable us to determine whether the aPVT might be involved in the entrainment or the expression of circadian rhythms, locomotor activity was monitored continuously in lesioned and control groups in Experiment 2, prior to and following the switch to short days. The reduction in photoperiod (involving an 8-hr advance in the time of lights-off and an 8-hr extension of the dark phase) caused a decompression of the nocturnal activity bout of control animals, so that after 2 weeks in short days, activity onset had also advanced to regain its phase relationship to the timing of lights-off. A similar pattern of reentrainment was observed in lesioned animals, and no differences were observed between treatment groups in the rate of entrainment and decompression. In addition, both intact controls and animals bearing large bilateral lesions of the aPVT exhibited robust free-running circadian rhythms of locomotor activity when held under constant dim red light. In summary, the integrity of the aPVT is not necessary for the seasonal response of the reproductive axis and prolactin secretion to photoperiod, nor for photic entrainment of activity rhythms, in the Syrian hamster.  相似文献   

20.
The golden hamster (Mesocricetus auratus) is one of the most frequently used laboratory animals, particularly in chronobiological studies. One reason is its very robust and predictable rhythms, although the question arises whether this is an inbreeding effect or rather is typical for the species. We compared the daily (circadian) activity rhythms of wild and laboratory golden hamsters. The laboratory hamsters were derived from our own outbred stock (Zoh:GOHA). The wild hamsters included animals captured in Syria and their descendants (F1). Experiments were performed under entrained (light: dark [LD] 14h:10h) and under free-running (constant darkness, DD) conditions. Locomotor activity was recorded using passive infrared detectors. Under entrained conditions, the animals had access to a running wheel for a certain time to induce additional activity. After 3 weeks in constant darkness, a light pulse (15 min, 100 lux) was applied at circadian time 14 (CT14). Both laboratory and wild hamsters showed well-pronounced and very similar activity rhythms. Under entrained conditions, all hamsters manifested about 80% of their total 24h activity during the dark portion of the LD cycle. The robustness of the daily rhythms was also similar. However, interindividual variability was higher in wild hamsters for both measures. All animals used the running wheels almost exclusively during the dark portion of the LD cycle, although the wild hamsters were three times more active. The period length, measured in constant darkness, was significantly shorter in wild (23.93h ± 0.10h) than in laboratory hamsters (24.06 ± 0.07h). The light-induced phase changes were not different (about 1.5h). In summary, these results indicate that the laboratory hamster is not much different from the wild type. (Chronobiology International, 18(6), 921-932, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号