首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In two separate sets of experiments, the phases of the locomotor activity rhythm of the nocturnal field mouse Mus booduga were probed using two light pulses (LPs). In the first set of experiments, the circadian pacemaker underlying the locomotor activity rhythm was perturbed at circadian time 14 (CT 14) using a resetting light pulse LP1 of 1000 lux intensity and 15 min duration. The phases of the resetting pacemaker were then probed at all even CTs between CT 16 and CT 14 using a PRC probing light pulse LP2 of equal strength. The "LP2 PRC" thus obtained was then compared with the single light pulse PRC in terms of the area under delay (D) and advance (A) zones of the PRCs. The time course and waveform of the two LP PRCs suggest that the LP2 PRC resembled the single LP PRC, displaced by 2 h toward the right. The LP1 PRC had smaller D compared to the single LP PRC (p = 0.007), whereas both the PRCs had A of equal magnitude (p = 0.23). This suggests that the pacemaker phase shifts rapidly after LP perturbations. In the second set of experiments, the LP1 was administered at CT 14. The phase of the pacemaker was then perturbed on day 1 (next cycle after LP1) either 2 h after activity onset (at ca. CT 14 of the transient cycle) or 8 h after activity onset (at ca. CT 20 of the transient cycle) using an LP2 of equal strength. It was observed that the steady-state phase shifts evoked by positioning an LP2, 2 h after activity onset, were positively correlated with the phase shifts observed on day 1. The steady-state phase shifts observed, when the LP2 was positioned, 8 h after activity onset, were negatively correlated with the phase shifts observed on day 1. These results suggest that the transient cycles do not mirror the state of the pacemaker oscillator.  相似文献   

2.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

3.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

4.
ABSTRACT

Melatonin, an essential pineal hormone, acts as a marker of the circadian clock that regulates biological rhythms in animals. The effects of exogenous melatonin on the circadian system of nocturnal rodents have been extensively studied; however, there is a paucity of studies on the phase-resetting characteristics of melatonin in diurnal rodents. We studied the phase shifting effects of exogenous melatonin as a single melatonin injection (1 mg/kg) at various phases of the circadian cycle on the circadian locomotor activity rhythm in the palm squirrel, Funambulus pennantii. A phase response curve (PRC) was constructed. Adult male squirrels (N = 10) were entrained to a 12:12 h light-dark cycle (LD) in a climate-controlled chronocubicle with food and water provided ad libitum. After stable entrainment, squirrels were transferred to constant dark condition (DD) for free-running. Following stable free run, animals were administered a single dose of melatonin (1 mg/kg in 2% ethanol-phosphate buffered saline (PBS) solution) or vehicle (2% ethanol-PBS solution) at circadian times (CTs) 3 h apart to evoke phase shifts. The phase shifts elicited at various CTs were plotted to generate the PRC. A dose response curve was generated using four doses (0.5, 1, 2 and 4 mg/kg) administered at the CT of maximum phase advance. Melatonin evoked maximum phase advances at CT0 (1.23 ± 0.28 h) and maximum phase delays at CT15 (0.31 ± 0.09 h). In the dose response experiment, maximal phase shifts were evoked with 1 mg/kg. In contrast, no significant shifts were observed in control groups. Our study demonstrates that the precise timing and appropriate dose of melatonin administration is essential to maximize the amelioration of circadian rhythm–related disorders in a diurnal model.  相似文献   

5.
Photic phase response curves (PRCs) have been extensively studied in many laboratory-bred diurnal and nocturnal rodents. However, comparatively fewer studies have addressed the effects of photic cues on wild diurnal mammals. Hence, we studied the effects of short durations of light pulses on the circadian systems of the diurnal Indian Palm squirrel, Funambulus pennanti. Adult males entrained to a light–dark cycle (12?h–12?h) were transferred to constant darkness (DD). Free-running animals were exposed to brief light pulses (250 lux) of 15?min, 3 circadian hours (CT) apart (CT 0, 3, 6, 9, 12, 15, 18 and 21). Phase shifts evoked at different phases were plotted against CT and a PRC was constructed. F. pennanti exhibited phase-dependent phase shifts at all the CTs studied, and the PRC obtained was of type 1 at the intensity of light used. Phase advances were evoked during the early subjective day and late subjective night, while phase delays occurred during the late subjective day and early subjective night, with maximum phase delay at CT 15 (?2.04?±?0.23?h), and maximum phase advance at CT 21 (1.88?±?0.31?h). No dead zone was seen at this resolution. The free-running period of the rhythm was concurrently lengthened (deceleration) during the late subjective day and early subjective night, while period shortening (acceleration) occurred during the late subjective night. The maximum deceleration was noticed at CT 15 (?0.40?±?0.09?h) and the maximum acceleration at CT 21 (0.39?±?0.07?h). A significant positive correlation exists between the phase shifts and the period changes (r?=?0.684, p?=?0.001). The shapes of both the PRC and period response curve (τRC) qualitatively resemble each other. This suggests that the palm squirrel’s circadian system is entrained both by phase and period responses to light. Thus, F. pennanti exhibits robust clock-resetting in response to light pulses.  相似文献   

6.
The locomotor activity rhythm of the nocturnal field mouse Mus booduga was monitored under constant darkness (DD) and free-running periods (tau) were estimated. Following a free-run of about 15 days in DD, the animals were exposed to periodic light pulses (LPs) of various intensities (1 lux, 10 lux, 50 lux, 100 lux, and 1,000 lux) and 15 minutes duration for 65 days at intervals of 24 hours to investigate the influence of intensity of light on the phase-angle-difference (psi) between the onset of locomotor activity and the time of LP administration. The experimentally observed values of psi and tau for a LP of 1,000 lux intensity used for 15 minutes every 24 hr, showed a sigmoid shaped relationship with tau. This relationship was similar to that predicted based on the nonparametric model of entrainment, which uses the tau and the LP phase response curve (PRC) constructed using LP of similar duration and intensity. The functional nature of the relationship between psi and tau was not found to change significantly with increasing intensities of LP used to entrain the locomotor activity rhythm. However, psi was significantly modulated by the intensity of LP. These results suggest that the periodic sensitivity of the circadian pacemaker underlying the locomotor activity rhythm in the nocturnal field mouse M. booduga to LPs plays an important role in maintaining a characteristic psi with the zeitgeber and the psi changes in a light intensity-dependent manner.  相似文献   

7.
A physiological dose of orally administered melatonin shifts circadian rhythms in humans according to a phase-response curve (PRC) that is nearly opposite in phase with the PRCs for light exposure: melatonin delays circadian rhythms when administered in the morning and advances them when administered in the afternoon or early evening. The human melatonin PRC provides critical information for using melatonin to treat circadian phase sleep and mood disorders, as well as maladaptation to shift work and transmeridional air travel. The human melatonin PRC also provides the strongest evidence to date for a function of endogenous melatonin and its suppression by light in augmenting entrainment of circadian rhythms by the light-dark cycle.  相似文献   

8.
A physiological dose of orally administered melatonin shifts circadian rhythms in humans according to a phase-response curve (PRC) that is nearly opposite in phase with the PRCs for light exposure: melatonin delays circadian rhythms when administered in the morning and advances them when administered in the afternoon or early evening. The human melatonin PRC provides critical information for using melatonin to treat circadian phase sleep and mood disorders, as well as maladaptation to shift work and transmeridional air travel. The human melatonin PRC also provides the strongest evidence to date for a function of endogenous melatonin and its suppression by light in augmenting entrainment of circadian rhythms by the light-dark cycle.  相似文献   

9.
We know that entrainment, a stable phase relationship with an environmental cycle, must be established for a biological clock to function properly. Phase response curves (PRCs), which are plots of phase shifts that result as a function of the phase of a stimulus, have been created to examine the mode of entrainment. In circadian rhythms, single-light pulse PRCs have been obtained by giving a light pulse to various phases of a free-running rhythm under continuous darkness. This successfully explains the entrainment to light-dark cycles. Some organisms show circannual rhythms. In some of these, changes in photoperiod entrain the circannual rhythms. However, no single-pulse PRCs have been created. Here we show the PRC to a long-day pulse superimposed for 4 weeks over constant short days in the circannual pupation rhythm in the varied carpet beetle Anthrenus verbasci. Because the shape of that PRC closely resembles that of the Type 0 PRC with large phase shifts in circadian rhythms, we suggest that an oscillator having a common feature in the phase response with the circadian clock, produces a circannual rhythm.  相似文献   

10.
Phase-response experiments using 1-h light pulses (LPs) of 1,100 lux applied under constant dim light of 0.3 lux were conducted with common marmosets, Callithrix j. jacchus, in order to obtain a complete phase-response curve established according to the common experimental procedure in a diurnal primate. Maximal phase delays of the free-running circadian activity rhythm (- 90 min) were induced by LPs delivered at circadian time (CT) 12; e.g., during the beginning of the marmosets' rest time, maximal advances (+ 25 min) were elicited by pulses administered during the late subjective night at CT 21. In contrast to rodents, neither regular transient cycles nor regular period responses resulted from LP applications at different phases. To check whether the underlying period length affects the phase response in primates as well, the marmosets' circadian timing system was entrained to 25 h by a lightrdark (LD) cycle of 12.5:12.5 h. The 1-h LPs were delivered during the first circadian cycle produced under constant dim light after the entraining LD periods. Here, LPs applied at CT 21 led to phase advances exceeding those measured during the steady-state free run. At CT 12, minor or no phase delays could be elicited. These findings show that the phase-shifting effect of LPs on the circadian system of marmosets is similar to that observed in other diurnal mammals. Some of the results indicate that in this diurnal primate, LP-induced phase shifts may be mediated in part by a light-induced increase in locomotor activity (arousal).  相似文献   

11.
A new mutation, designated as psi-mutant, affecting the timing of the circadian oviposition rhythm was discovered the in natural population of Aedes krombeini . This mutation advanced the phase of the oviposition median in an entraining light-dark cycle of 12:12 h by ca. 7.0 h and shortened the free running period t in constant darkness (DD) by ca. 4.0 h. Early oviposition in psi-mutants was also observed when while free-running in DD they were subjected to 24-h temperature cycles (29°C for 12 h and l8°C for l2 h). When the phase response curves (PRCs) for light pulses against DD as background were measured, the PRC for the psi-mutant had large delaying phase shifts, whereas, that of the wild strain had small delaying phase shifts.  相似文献   

12.
A new mutation, designated as psi-mutant, affecting the timing of the circadian oviposition rhythm was discovered the in natural population of Aedes krombeini. This mutation advanced the phase of the oviposition median in an entraining light-dark cycle of 12:12 h by ca. 7.0 h and shortened the free running period t in constant darkness (DD) by ca. 4.0 h. Early oviposition in psi-mutants was also observed when while free-running in DD they were subjected to 24-h temperature cycles (29°C for 12 h and l8°C for l2 h). When the phase response curves (PRCs) for light pulses against DD as background were measured, the PRC for the psi-mutant had large delaying phase shifts, whereas, that of the wild strain had small delaying phase shifts.  相似文献   

13.
Phase-response experiments using 1-h light pulses (LPs) of 1,100 lux applied under constant dim light of 0.3 lux were conducted with common marmosets, Callithrix j. jacchus, in order to obtain a complete phase-response curve established according to the common experimental procedure in a diurnal primate. Maximal phase delays of the free-running circadian activity rhythm (- 90 min) were induced by LPs delivered at circadian time (CT) 12; e.g., during the beginning of the marmosets' rest time, maximal advances (+ 25 min) were elicited by pulses administered during the late subjective night at CT 21. In contrast to rodents, neither regular transient cycles nor regular period responses resulted from LP applications at different phases. To check whether the underlying period length affects the phase response in primates as well, the marmosets' circadian timing system was entrained to 25 h by a lightrdark (LD) cycle of 12.5:12.5 h. The 1-h LPs were delivered during the first circadian cycle produced under constant dim light after the entraining LD periods. Here, LPs applied at CT 21 led to phase advances exceeding those measured during the steady-state free run. At CT 12, minor or no phase delays could be elicited. These findings show that the phase-shifting effect of LPs on the circadian system of marmosets is similar to that observed in other diurnal mammals. Some of the results indicate that in this diurnal primate, LP-induced phase shifts may be mediated in part by a light-induced increase in locomotor activity (arousal).  相似文献   

14.
The goal of this study was to provide an example of nonsocial and nonphotic entrainment in Syrian hamsters, together with a corresponding phase response curve (PRC). Fourteen male hamsters were given 2-hr bouts of induced activity (mostly wheel running) at 23.83-hr intervals in constant darkness (DD). The activity onsets of 10 hamsters entrained to this manipulation, with no anticipatory activity present. After entrainment, the rhythms resumed free-running from a time 0.66-3.91 hr after the onset of the last bout of induced activity. Postentrainment free-running periods were shorter than pre-entrainment values. The PRC for 2-hr pulses of induced activity in DD revealed phase advances induced in some animals between circadian time (CT) 4 and CT 11 (approximately the last half of the hamsters' rest period), and delays between CT 23 and CT 3 and between CT 17 and CT 20. The CTs for phase advances are compatible with the phase angle differences observed between rhythm and zeitgeber at the end of entrainment. Many features of the results (not all animals entraining, PRC characteristics, lack of observable anticipation to the daily stimuli, phase relationship between zeitgeber and activity rhythms) are similar to those from a previous study on social entrainment in this species (Mrosovsky, 1988). These similarities reinforce the idea that induced activity and social zeitgebers act on activity rhythms via a common mechanism.  相似文献   

15.
Circadian regulation of pineal melatonin content was studied in Syrian hamsters (Mesocricetus auratus), especially melatonin peak width and the temporal correlation to wheel-running activity. Melatonin was measured by radioimmunoassay in glands removed at different circadian times with respect to activity onset (= CT 12). Pineal melatonin peak width (h; for mean 125 pg/gland) and activity duration () were both 4–5 h longer after 12 or 27 weeks than after 5 or 6 days in continuous darkness (DD). Increased peak width was associated with a delay in the morning decline (M) of melatonin to baseline, correlated with a similar delay in wheel-running offset. In contrast, the evening rise (E) in melatonin occurred at approximately the same circadian phase regardless of the length of DD. Fifteen min light pulses produced similar phase-shifts in melatonin and activity. In a phase advance shift, M advanced at once, while E advanced only after several days of adjustment. Independent timing of shifts in the E and M components of the melatonin rhythm suggest that these events are controlled separately by at least two circadian oscillators whose mutual phase relationship determines melatonin peak width. This two-oscillator control of melatonin peak width is integral to the circadian mechanism of hamster photoperiodic time measurement.Abbreviations CT circadian time - DD continuous dark - L: D light: dark cycle - PMEL pineal melatonin - PRC phase response curve - RIA radioimmunoassay; , duration (h) of the active phase of the circadian wheel-running rhythm; , free-running period  相似文献   

16.
The wheel-running activity rhythm of tree shrews (tupaias; Tupaia belangeri) housed in constant darkness (DD) phase-advanced following a 3-hr light pulse at circadian time (CT) 21. Dark pulses of 3 hr presented to tupaias in bright constant light (LL) did not induce significant phase shifts of the free-running activity rhythm, irrespective of the CT. In dim LL, tupaias showed simultaneous splitting of their circadian rhythm of wheel-running activity, nest-box activity, and feeding behavior. Light pulses of 6 hr and 2300 lux were presented to 13 tupaias with split wheel-running activity rhythms. These light pulses induced immediate phase shifts in the two components of the split rhythm in opposite directions. No differences were observed between the light-pulse phase response curves of the two components. Equally large immediate phase advances were induced in both components by light pulses of 230 lux, but not by 23 lux. The final phase shifts were small at all CTs. In two tupaias, activity rhythms transiently split and re-fused. Analysis of the relative position of the components in one of these indicates asymmetry in the coupling between the components.  相似文献   

17.
Phase-response curves (PRCs) for the circadian rhythm of flight activity of the microchiropteran bat (Hipposideros speoris) were determined in a cave, employing discrete natural dawn and dusk twilight pulses. These PRCs are reported for the first time for any circadian system and they are unlike other PRCs constructed for nocturnal mammals. Dawn and dusk twilight pulses evoked advance and delay phase shifts, respectively. Advance phase shifts were followed by 3 to 4 advancing transients and a subsequent shortening of free-running period (τ); whereas, the delay phase shifts were instantaneous without any transients but with a subsequent lengthening of τ.  相似文献   

18.
The circadian rhythm of locomotor activity of the field mouse Mus booduga was studied and single animal phase response curves (PRCs) (n = 8) were constructed for 15-min daylight pulses of 1000 lux intensity. The light pulses, presented at different phases of the circadian cycle, evoked advancing and delaying phase shifts (ΔPHs) depending on the circadian time (CT) of light pulse application. ΔPHs by light pulses applied at the same phase are strongly correlated with the animals' circadian period (τ). The results indicate a significant correlation between (i) τ and the area under the advance zone of the PRC (A) (r = +0.72, p > 0.05), (ii) τ and the area under the delay zone of the PRC (D) (r = -0.98, p > 0.00001), (iii) τ and the difference between the area under delay and advance zone of PRC (D-A) (r = -0.97, p > 0.00001), and (iv) between τ and ΔpHs (at various phases of the circadian cycle) and further suggest that the waveform and time course of PRC depend on the animals' endogenous period (τ). (Chronobiology International, 13(6), 401–409, 1996)  相似文献   

19.
The circadian mutation duper in Syrian hamsters shortens the free-running circadian period (τ(DD)) by 2 hours when expressed on a tau mutant (τ(ss)) background and by 1 hour on a wild-type background. We have examined the effects of this mutation on phase response curves and entrainment. In contrast to wild types, duper hamsters entrained to 14L:10D with a positive phase angle. Super duper hamsters (expressing duper on a τ(ss) background) showed weak entrainment, while τ(ss) animals either completely failed to entrain or showed sporadic entrainment with episodes of relative coordination. As previously reported, wild-type and τ(ss) hamsters show low amplitude resetting in response to 15-minute light pulses after short-term (10 days) exposure to DD. In contrast, super duper hamsters show high amplitude resetting. This effect is attributable to the duper allele, as hamsters carrying duper on a wild-type background also show large phase shifts. Duper mutants that were born and raised in DD also showed high amplitude resetting in response to 15-minute light pulses, indicating that the effect of the mutation on PRC amplitude is not an aftereffect of entrainment to 14L:10D. Hamsters that are heterozygous for duper do not show amplified resetting curves, indicating that for this property, as for determination of free-running period, the mutant allele is recessive. In a modified Aschoff type II protocol, super duper and duper hamsters show large phase shifts as soon as the second day of DD. Despite the amplification of the PRC in super duper hamsters, the induction of Period1 gene expression in the SCN by light is no greater in these mutants than in wild-type animals. Period2 expression in the SCN did not differ between super duper and wild-type hamsters exposed to light at CT15, but albumin site D-binding protein (Dbp) mRNA showed higher basal levels and greater light induction in the SCN of super duper compared to wild-type animals. These results indicate that the duper mutation alters the amplitude of the circadian oscillator and further distinguish it from the tau mutation.  相似文献   

20.
Experiments were conducted in hamsters to determine whether the phase response curve (PRC) to injections of the short-acting benzodiazepine triazolam is a fixed or a labile property of the circadian clock. The results indicated that (1) both the shape and the amplitude of the PRC to triazolam generated on the first day of transfer from a light-dark cycle (LD 14:10) to constant darkness (DD) (i.e., PRCLD) were different from those of the PRC generated after many days in DD (PRCDD); and (2) the phase-shifting effects of triazolam on the activity rhythms of hamsters transferred from LD 14:10 or 12:12 to DD changed dramatically within the first 8-9 days spent in DD. In an attempt to accelerate the resynchronization of the circadian clock of hamsters subjected to an 8-hr advance in the LD cycle, triazolam was given to the animals at a time selected on the basis of the characteristics of PRCLD. The activity rhythms of five of eight triazolam-treated animals were resynchronized to the new LD cycle within 2-4 days after the shift, whereas those of most of the control animals were resynchronized 21-29 days after the shift. These findings suggest that attempts to use pharmacological or nonpharmacological tools to phase-shift circadian clocks under entrained conditions should take into account information derived from PRCs generated at the time of transition from entrained to free-running conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号