首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Island plant–pollinator networks are typically simpler than their continental counterparts and this can make them less resilient to disturbance from exotic species. French Polynesia has a very low diversity of bees, but their status as either native or introduced species has been largely speculative. We combine previous studies with new DNA sequence data to show that 11 bee species have now been recorded for French Polynesia. Haplotype variation at the ‘barcode’ region of the mitochondrial gene cytochrome c oxidase subunit I (COI) for four of these species, Ceratina dentipes Freise, Xylocopa sonorina Smith, Braunsapis puangensis (Cockerell) and Amegilla pulchra (Smith), indicates that they all represent very recent introductions. Apis mellifera Linnaeus was a purposefully introduced species, and four megachilid species probably arrived due to human‐aided dispersal through maritime activities in the Pacific. The two remaining bee species, an unidentified partial specimen of a halictid bee and the colletid bee Hylaeus (P.) tuamotuensis Michener, are collectively known from only four specimens collected in the 1930s and their provenance is uncertain. French Polynesia therefore comprises a region where recently introduced bee species greatly overwhelm any possible native bee fauna. These introductions are likely to have major ecosystem impacts, including disruptions of existing plant–pollinator networks and facilitating the spread of weedy plant species, as well as positive impacts for agriculture. Future biosecurity initiatives need to consider these potential impacts and the likely routes of dispersal to effectively control any further unintended introductions.  相似文献   

2.
Abstract Interspecific competition for a limited resource can result in the reduction of survival, growth and/or reproduction in one of the species involved. The introduced honey bee (Apis mellifera Linnaeus) is an example of a species that can compete with native bees for floral resources. Often, research into honey bee/native bee competition has focused on floral resource overlap, visitation rates or resource harvesting, and any negative interaction has been interpreted as a negative impact. Although this research can be valuable in indicating the potential for competition between honey bees and native bees, to determine if the long‐term survival of a native bee species is threatened, fecundity, survival or population density needs to be assessed. The present review evaluates research that has investigated all these measurements of honey bee/native bee competition and finds that many studies have problems with sample size, confounding factors or data interpretation. Guidelines for future research include increasing replication and using long‐term studies to investigate the impact of both commercial and feral honey bees.  相似文献   

3.
Recent studies suggest an alarming decline in pollinators across many regions of the world due to multiple factors. One potential factor is climate change, which poses both direct and indirect threats to pollinator populations. To help ameliorate the impact of declining populations on the function of ecological and agricultural systems, there is a need to identify species that may adapt to limit the magnitude of this pollination deficit. The South West Pacific has a highly depauperate endemic bee diversity and numerous non‐indigenous species, including honeybees. One allodapine bee, Braunsapis puangensis, has been accidentally introduced to Fiji where it has rapidly spread across multiple islands and become locally abundant. It is a long‐tongued bee, unaffected by honeybee pathogens, and has the potential to become an important crop pollinator. Here, we model the distribution of this species under different climate scenarios to determine how it is likely to respond to future climate change. We show that its distribution is unlikely to contract, but potentially expand with climate warming. These scenarios therefore indicate that the plasticity in B. puangensis populations may allow it to represent an important crop pollinator in this region should honeybee populations decline.  相似文献   

4.
Abstract We examined the potential of forest plantations to support communities of forest‐using insects when planted into an area with greatly reduced native forest cover. We surveyed the insect fauna of Eucalyptus globulus (Myrtaceae) plantations and native Eucalyptus marginata dominated remnant woodland in south‐western Australia, comparing edge to interior habitats, and plantations surrounded by a pastoral matrix to plantations adjacent to native remnants. We also surveyed insects in open pasture. Analyses focused on three major insect orders: Coleoptera, Lepidoptera and Hymenoptera. Plantations were found to support many forest‐using insect species, but the fauna had an overall composition that was distinct from the remnant forest. The pasture fauna had more in common with plantations than forest remnants. Insect communities of plantations were different from native forest both because fewer insect species were present, and because they had a few more abundant insect species. Some of the dominant species in plantations were known forestry pests. One pest species (Gonipterus scutellatus) was also very abundant in remnant forest, although it was only recently first recorded in Western Australia. It may be that plantation forestry provided an ecological bridge that facilitated invasion of the native forest by this nonendemic pest species. Plantation communities had more leaf‐feeding moths and beetles than remnant forests. Plantations also had fewer ants, bees, evanioid wasps and predatory canopy beetles than remnants, but predatory beetles were more common in the understory of plantations than remnants. Use of broad spectrum insecticides in plantations might limit the ability of these natural enemies to regulate herbivore populations. There were only weak indications of differences in composition of the fauna at habitat edges and no consistent differences between the fauna of plantations adjacent to remnant vegetation and those surrounded by agriculture, suggesting that there is little scope for managing biodiversity outcomes by choosing different edge to interior ratios or by locating plantations near or far from remnants.  相似文献   

5.
Question: What are the changes associated with the recent invasion by the non‐native legume, Cytisus scoparius? Location: Subalpine vegetation (1500 m a.s.l.) in Australia. Methods: We used multivariate techniques and regression analyses to assess vegetation and environmental changes across six study sites. Vegetation and environmental variables were investigated at three different stages of invasion: (1) recent invasion (8–10 yr), (2) mature invasion (15–16 yr) and (3) long‐term invasion (25 yr). Results: Substantial changes in floristic composition and species richness were evident after 15 yr and these changes became more pronounced after 25 yr. Changes due to invasion were associated with a dramatic loss of native species or a reduction in their abundance. No ‘new species’ were evident under invaded stands. Forbs were most affected by the establishment of C. scoparius, although all growth forms responded negatively. Dense canopy shading and an increasingly dense, homogeneous litter layer in the understorey as a result of C. scoparius were strong environmental drivers of vegetation change. Greenhouse studies confirmed the importance of these processes on the germination and growth of two native species. Conclusions: This study highlights the potential for C. scoparius to alter both vegetation and environmental processes in the subalpine region.  相似文献   

6.
7.
The production of diverse and affordable agricultural crop species depends on pollination services provided by bees. Indeed, the proportion of pollinator‐dependent crops is increasing globally. Agriculture relies heavily on the domesticated honeybee; the services provided by this single species are under threat and becoming increasingly costly. Importantly, the free pollination services provided by diverse wild bee communities have been shown to be sufficient for high agricultural yields in some systems. However, stable, functional wild bee communities require floral resources, such as pollen and nectar, throughout their active season, not just when crop species are in flower. To target floral provisioning efforts to conserve and support native and managed bee species, we apply network theoretical methods incorporating plant and pollinator phenologies. Using a two‐year dataset comprising interactions between bees (superfamily Apoidea, Anthophila) and 25 native perennial plant species in floral provisioning habitat, we identify plant and bee species that provide a key and central role to the stability of the structure of this community. We also examine three specific case studies: how provisioning habitat can provide temporally continuous support for honeybees (Apis mellifera) and bumblebees (Bombus impatiens), and how resource supplementation strategies might be designed for a single genus of important orchard pollinators (Osmia). This framework could be used to provide native bee communities with additional, well‐targeted floral resources to ensure that they not only survive, but also thrive.  相似文献   

8.
The relationship between invasion success and native biodiversity is central to biological invasion research. New theoretical and analytical approaches have revealed that spatial scale, land‐use factors and community assemblages are important predictors of the relationship between community diversity and invasibility and the negative effects of invasive species on community diversity. In this study we assess if the abundance of Lithobates catesbeianus, the American bullfrog, negatively affects the richness of native amphibian species in Atlantic Forest waterbodies in Brazil. Although this species has been invading Atlantic Forest areas since the 1930s, studies that estimate the invasion effects upon native species diversity are lacking. We developed a model to understand the impact of environmental, spatial and species composition gradients on the relationships between bullfrogs and native species richness. We found a weak positive relationship between bullfrog abundance and species richness in invaded areas. The path model revealed that this is an indirect relationship mediated by community composition gradients. Our results indicate that bullfrogs are more abundant in certain amphibian communities, which can be species‐rich. Local factors describing habitat heterogeneity were the main predictors of amphibian species richness and composition and bullfrog abundance. Our results reinforce the important role of habitats in determining both native species diversity and potential invasibility.  相似文献   

9.
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.  相似文献   

10.
Twenty-five years ago, Arctomecon humilis, a pollinator-dependent, endangered poppy globally restricted to the extreme northeastern Mojave Desert in southwestern Utah, was pollinated by native bee species and the European honey bee. Follow-up studies beginning in 2012 failed to find the two most important native bee pollinator species, one of which, Perdita meconis, is a strict poppy specialist. We had four objectives: (1) confirm the status of formerly important native bee pollinators; (2) determine the role of the Africanized honey bee which reportedly invaded southern Utah in 2008; (3) examine the effect of the ostensible change in pollinator fauna on fruit set in four populations; (4) describe the pollination proficiency of species that presently visit poppy flowers. For the fourth consecutive survey, P. meconis was absent; its local extinction in Utah now seems certain. Another previously important native pollinator, Eucera quadricincta, was very rare. Also uncommon was the European honey bee, having been largely replaced by Africanized honey bees which have become, in most populations, the prevalent pollinator. Africanized bees forage early in the day and quickly strip flowers of their copious pollen leaving little for native bees. We argue that the invasion of southern Utah by Africanized bees is the most likely cause of the severe disruption of the A. humilis pollination system. The ascension of the Africanized bee is also associated with reduced fruit set in all poppy populations, especially those where plants are sparse. Arctomecon humilis now appears to depend mostly on an invasive species for pollination.  相似文献   

11.
When examining how the ecosystems of remote islands have developed, it is important to know the timing of when various elements arrived and whether they then diversified. Our understanding of the histories behind the biodiverse south west Pacific (SWP) archipelagos is limited, and further impeded by the complex geological histories of this region. Previous studies of the SWP short-tongued halictine bee fauna suggest their presence is much younger than the geological ages of these archipelagos, which is surprising given their critical role as pollinators in other terrestrial ecosystems. The long-tongued megachilid bees represent a considerable proportion of the known bee species for the region, yet little is known of their origin. Here we use genetic diversity within mitochondrial DNA to infer the likely ages and origins of megachilid species from Vanuatu, Fiji, and Samoa. Our results indicate a very recent origin for megachilids in the SWP, with many species exhibiting small intraspecific genetic distances. Three species share almost identical haplotypes with specimens from Southeast Asia, suggesting multiple human-aided introductions. Combined with data from recent studies on other bee groups present in the region, our results have broad implications for how the Pacific island biota developed and how we should approach its management.  相似文献   

12.
Woodland and forest degradation, driven predominately by agricultural and pastoral production, is a crisis facing many species globally, in particular hollow‐dependent fauna. Large predatory species play important roles in both ecosystems and conservation strategies, but few studies have examined habitat selection of such species in intensively human‐modified landscapes. We quantified habitat selection and resource use by a large, top‐order and threatened snake (carpet python, Morelia spilota), between adjacent areas of high and low anthropogenic modification in inland Australia, a region that has undergone considerable alteration since European settlement. At the low‐impact site, snakes preferred tree hollows and a structurally complex understorey, whereas at the high‐impact site, snakes preferred homestead attics. Based on the decline of the species in this region, however, high‐impact landscapes may only support snakes when they are adjacent to low‐impact habitats. Invasive species comprised a large part of snake diets in both landscape types. Carpet pythons, with large home ranges and habitat requirements that overlap with many smaller threatened mammalian and avian fauna, are generally well liked and easily identifiable by rural landholders. Accordingly, they may play a key role in conservation strategies aimed at the protection of woodland and hollow‐dependent fauna in heavily modified landscapes of Australia's inland regions. However, invasive species, which tend to contribute to declines in native species inhabiting arid and semi‐arid Australia, are beneficial and important to pythons. Our study therefore highlights the diversity of effects that two major threats to biodiversity – habitat loss and invasive species – can have on different species within the same ecosystem.  相似文献   

13.
The islands of the south west Pacific (SWP) are highly biodiverse, yet records of their bee fauna suggest a region depauperate of a key pollinator suite. Studies of the bees of Fiji based on molecular data have revealed a recent origin with the majority of species having arrived since the last glacial maximum or introduced since human colonization. Here we use DNA barcodes to provide the first detailed account of Apidae bees from Vanuatu, Fiji, and Samoa. We show that most if not all species in these archipelagos have been recently introduced from Australia and south east Asia, with a further species introduced from the New World. Some of these species have become regionally abundant and we discuss the potential impact of introduced pollinators on endemic plant–pollinator associations. Given the wide-reaching role of native pollinators in island systems, yet lack of understanding of SWP pollinator suites, our study highlights the urgent need for more detailed pollinator research in the region.  相似文献   

14.
Abstract. Three related species of oak gall wasps, Andricus corruptrix (Schlechtendal), A. kollari (Hartig) and A. lignicola (Hartig) have entered Britain since the introduction of Turkey oak, Quercus cerris L. in 1735. Their lifecycles involve alternating generations between an agamic generation on the native oak species (Q. petraea, Q. robur and their hybrid Q. x. rosacea), and a smaller, sexual generation on the alien Q. cerris. In examining the distributions of these insects and Q. cerris, we hypothesized that: (1) the invasion will spread more rapidly in places where both host trees are equally abundant than through regions where one of the tree species is substantially less common than the other; (2) interspecific competition between these bud‐galling species will lead to a negative correlation between their abundances at a particular site; (3) differential recruitment of natural enemies from the native hymenopteran fauna will slow the rate of spread in a species‐specific manner. A. kollari arrived nearly 200 years ago and is now found throughout the British Isles, wherever Turkey oak is grown. A. lignicola and A. corruptrix have been here for 30 years, after establishing in S.E. England. A. lignicola is in its final rapid stages of range expansion across England, southern Scotland and N.E. Scotland. A. corruptrix is just beginning to spread through Central and S.W. England. It has occupied proportionally fewer sites behind its invasion front than have the other two species, but is no less abundant at these sites. Nevertheless, distance leaps of up to 50 km were identified in A. lignicola in N.E. Scotland, and the possibility of long‐distance transport of infected trees through the horticulture and forestry trades remains. The co‐occurrence of mature individuals of both host Quercus species does appear to have increased their rates of colonization in A. lignicola and A. corruptrix. There is no evidence, however, to suggest that interspecific competition between the three alien gall formers is an important factor in determining their distributions and abundance within their invaded ranges. All three species have recruited parasitoids and inquilines rapidly from the native fauna; attack rates were highly variable, but showed no evidence of density dependence across sites.  相似文献   

15.
16.
Aim Explaining why some invasions fail while others succeed is a prevailing question in invasion biology. Different factors have been proposed to explain the success or failure of exotics. Evidence suggests that climate similarities may be crucial. We tested this using 12 species of the genus Pinus that have been widely planted and shown to be highly invasive. Pinus is among the best‐studied group of exotic species and one that has been widely introduced world‐wide, so we were able to obtain data on invasive and non‐invasive introductions (i.e. unsuccessful invasions; areas where after many decades of self‐sowing seeds there is no invasion). Location World‐wide. Methods We developed species distribution models for native ranges using a maximum entropy algorithm and projected them across the globe. We tested whether climate‐based models were able to predict both invasive and non‐invasive introductions. Results Appropriate climatic conditions seem to be required for these long‐lived species to invade because climates accurately predicted invasions. However, climate matching is necessary, but not sufficient to predict the fate of an introduction because most non‐invasive introductions were predicted to have triggered an invasion. Main conclusions Other factors, possibly including biotic components, may be the key to explaining why some introductions do not become invasions, because many areas where Pinus is not invading were predicted to be suitable for invasion based solely on climate.  相似文献   

17.
As invasive plant species are a major driver of change on oceanic islands, their control is an important challenge for restoration ecology. The post‐control recovery of native vegetation is crucial for the treatments to be considered successful, but few studies have evaluated the effects of control measures on both target and non‐target species. To investigate the efficiency of manual control of Cinchona pubescens and its impacts on the sub‐tropical highland vegetation of Santa Cruz Island, Galápagos, vegetation was sampled before and up to two years after control was carried out in permanent sampling plots. Manual control significantly reduced Cinchona density. Due to regeneration from the seed or bud bank, follow‐up control is required, however, for long‐term success. Despite heavy disturbance from tree uprooting, herbaceous angiosperms were little affected by the control actions, whereas dominant fern species declined in cover initially. Most native, endemic, and other introduced species regained their pre‐control levels of cover 2 years after control; some species even exceeded them. The total number of species significantly increased over the study period, as did species diversity. The native highland vegetation appeared to be resilient, recovering to a level probably more characteristic of the pre‐invasion state without human intervention after Cinchona control. However, some introduced species seemed to have been facilitated by the control actions, namely Stachys agraria and Rubus niveus. Further monitoring is needed to confirm the long‐term nature of vegetation change in the area.  相似文献   

18.
Evaluating dominance as a component of non-native species invasions   总被引:2,自引:0,他引:2  
Many studies have quantified plant invasions by determining patterns of non‐native species establishment (i.e. richness and absolute cover). Until recently, dominance has been largely overlooked as a significant component of invasion. Therefore, we re‐examined a 6‐year data set of 323 0.1 ha plots within 18 vegetation types collected in the Grand Staircase‐Escalante National Monument from 1998 to 2003, including dominance (i.e. relative cover) in our analyses. We specifically focused on the non‐native species Bromus tectorum, a notable dominant annual grass in this system. We found that non‐native species establishment and dominance are both occurring in species‐rich, mesic vegetation types. Therefore, non‐native species dominance may result despite many equally abundant native species rather than a dominant few, and competitive exclusion does not seem to be a primary control on either non‐native species establishment or dominance in this study. Unlike patterns observed for non‐native species establishment, relative non‐native species cover could not be predicted by native species richness across vegetation types (R2 < 0.001; P = 0.45). However, non‐native species richness was found to be positively correlated with relative non‐native species cover and relative B. tectorum cover (R2 = 0.46, P < 0.01; R2 = 0.17, P < 0.01). Analyses within vegetation types revealed predominantly positive relationships among these variables for the correlations that were significant. Regression tree analyses across vegetation types that included additional biotic and abiotic variables were a little better at predicting non‐native species dominance (PRE = 0.49) and B. tectorum dominance (PRE = 0.39) than at predicting establishment. Land managers will need to set priorities for control efforts on the more productive, species‐rich vegetation types that appear to be susceptible to both components of invasion.  相似文献   

19.
Changing climate extremes and invasion by non‐native species are two of the most prominent threats to native faunas. Predicting the relationships between global change and native faunas requires a quantitative toolkit that effectively links the timing and magnitude of extreme events to variation in species abundances. Here, we examine how discharge anomalies – unexpected floods and droughts – determine covariation in abundance of native and non‐native fish species in a highly variable desert river in Arizona. We quantified stochastic variation in discharge using Fourier analyses on >15 000 daily observations. We subsequently coupled maximum annual spectral anomalies with a 15‐year time series of fish abundances (1994–2008), using Multivariate Autoregressive State‐Space (MARSS) models. Abiotic drivers (discharge anomalies) were paramount in determining long‐term fish abundances, whereas biotic drivers (species interactions) played only a secondary role. As predicted, anomalous droughts reduced the abundances of native species, while floods increased them. However, in contrast to previous studies, we observed that the non‐native assemblage was surprisingly unresponsive to extreme events. Biological trait analyses showed that functional uniqueness was higher in native than in non‐native fishes. We also found that discharge anomalies influenced diversity patterns at the meta‐community level, with nestedness increasing after anomalous droughts due to the differential impairment of native species. Overall, our results advance the notion that discharge variation is key in determining community trajectories in the long term, predicting the persistence of native fauna even in the face of invasion. We suggest this variation, rather than biotic interactions, may commonly underlie covariation between native and non‐native faunas, especially in highly variable environments. If droughts become increasingly severe due to climate change, and floods increasingly muted due to regulation, fish assemblages in desert rivers may become taxonomically and functionally impoverished and dominated by non‐native taxa.  相似文献   

20.
1. North‐eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step‐wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of “biotic resistance” to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号