首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Intracellular free calcium concentration [( Ca2+]1) was measured in suspensions of fura-2 loaded smooth-muscle cells isolated from the anterior byssus retractor muscle of Mytilus edulis. Successive application of 5mM carbachol (CCh) and 100mM KCl to the cells transiently elevated [Ca2+]1 from the resting value of 124 +/- 4.5nM (mean +/- S.E., n = 14) to 295 +/- 15.3 and 383 +/- 20.5 nM, respectively. The response to CCh was concentration-dependent with an ED50 of 10(-5) M. Under the microscope, 67 +/- 3.0 and 83 +/- 1.3 % of fura-2 loaded cells contracted on the addition of 5mM CCh and 100mM KCl, respectively. In Ca2+ -free sea water, the CCh induced change in [Ca2+]1 was partially suppressed whereas that induced by KCl was completely abolished, suggesting an agonist-evoked release of stored Ca2+.  相似文献   

5.
The LAN-1 clone, a cell line derived from a human neuroblastoma, possesses muscarinic receptors. The stimulation of these receptors with increasing concentrations of carbachol (CCh; 1-1,000 microM) caused a dose-dependent increase of the intracellular free Ca2+ concentration ([Ca2+]i). This increase was characterized by an early peak phase (10 s) and a late plateau phase. The removal of extracellular Ca2+ reduced the magnitude of the peak phase to approximately 70% but completely abolished the plateau phase. The muscarinic-activated Ca2+ channel was gadolinium (Gd3+) blockade and nimodipine and omega-conotoxin insensitive. In addition, membrane depolarization did not cause any increase in [Ca2+]i. The CCh-induced [Ca2+]i elevation was concentration-dependently inhibited by pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, two rather selective antagonists of M1 and M3 muscarinic receptor subtypes, respectively, whereas methoctramine, an M2 antagonist, was ineffective. The coupling of M1 and M3 receptor activation with [Ca2+]i elevation does not seem to be mediated by a pertussis toxin-sensitive guanine nucleotide-binding protein or by the diacylglycerol-protein kinase C system. The mobilization of [Ca2+]i elicited by M1 and M3 muscarinic receptor stimulation seems to be dependent on an inositol trisphosphate-sensitive intracellular store. In addition, ryanodine did not prevent CCh-induced [Ca2+]i mobilization, and, finally, LAN-1 cells appear to lack caffeine-sensitive Ca2+ stores, because the methylxanthine was unable to elicit intracellular Ca2+ mobilization, under basal conditions, after a subthreshold concentration of CCh (0.3 microM), or after thapsigargin.  相似文献   

6.
Hattori T  Wang PL 《Life sciences》2007,81(8):683-690
Ca2+ antagonists cause dry mouth by inhibiting saliva secretion. The present study was undertaken to elucidate the mechanism by which Ca2+ antagonists cause dry mouth. Since the intracellular Ca2+ concentration ([Ca2+]i) is closely related to saliva secretion, [Ca2+]i was measured with a video-imaging analysis system by using human submandibular gland (HSG) cells as the material. The Ca2+ antagonist, nifedipine, inhibited the elevation in [Ca2+]i induced by 1-10 microM carbachol (CCh), but had no inhibitory effect on that induced by 30 and 100 microM CCh. The other kinds of Ca2+ antagonists, verapamil (10 microM), diltiazem (10 microM), and the inorganic Ca2+ channel blocker, CdCl2 (50 microM), also inhibited the [Ca2+]i elevation induced by 10 microM CCh. The Ca2+ channel activator, Bay K 8644 (5 microM), significantly enhanced the CCh (10 microM)-induced [Ca2+]i elevation. Endothelin-1 and norepinephrine also increased the CCh (10 microM)-induced [Ca2+]i elevation. SKF-96365 reversed the enhancement of the CCh (10 microM)-induced [Ca2+]i elevation caused by AlF4- and phenylephrine. The phospholipase Cbeta (PLCbeta) inhibitor, U-73122 (5 microM), significantly inhibited the [Ca2+]i elevation induced by 100 microM CCh compared with that induced by 10 microM CCh, while the PLCbeta activator, m-3M3FBS (20 microM), significantly increased the [Ca2+]i elevation induced by 100 microM CCh compared with that induced by 10 microM CCh. We therefore conclude that non-selective cation and voltage-dependent Ca2+ channels are involved in resting salivation and that Ca2+ antagonists depress H2O secretion by blocking the Ca2+ channels and thereby cause dry mouth.  相似文献   

7.
Cui XL  Chen HZ  Wu DM  Wu BW 《生理学报》2004,56(6):713-716
本文旨在研究氨甲酰胆碱(carbachol, CCh)对豚鼠心肌的正性变力性机制。用Axon200A膜片钳放大器观察CCh 对电压钳制下的豚鼠心肌细胞L-型钙电流(ICa)和钠钙交换电流(INa/Ca)的效应。结果表明, CCh(100 μmol/L)分别使正向INa/Ca从对照组的(1.2 ± 0.1) pA/pF 增加到(2.0 ± 0.3) pA/pF,使反向 INa/Ca 从对照组的(1.3 ± 0.5) pA/pF 增加到(2.1 ± 0.8) pA/pF (P<0.01)。CCh对ICa无影响。CCh 对INa/Ca的激动作用可被阿托品和methoctramine所阻断。以上结果提示, CCh 对豚鼠心脏的正性变力作用是通过激动了钠钙交换,而且是 M2 毒蕈碱受体所介导的。  相似文献   

8.
Intracellular calcium concentration ([Ca2+]i) governs the contractile status of arteriolar smooth muscle cells (SMC). Although studied in vitro, little is known of SMC [Ca2+]i dynamics during the local control of blood flow. We tested the hypothesis that the rise and fall of SMC [Ca2+]i underlies arteriolar constriction and dilation in vivo. Aparenchymal segments of second-order arterioles (diameter 35 +/- 2 microm) were prepared in the superfused cheek pouch of anesthetized hamsters (n = 18) and perifused with the ratiometric dye fura PE-3 (AM) to load SMC (1 microM, 20 min). Resting SMC [Ca2+]i was 406 +/- 37 nM. Elevating superfusate O2 from 0 to 21% produced constriction (11 +/- 2 microm) that was unaffected by dye loading; [Ca2+]i increased by 108 +/- 53 nM (n = 6, P < 0.05). Cycling of [Ca2+]i during vasomotion (amplitude, 150 +/- 53 nM; n = 4) preceded corresponding diameter changes (7 +/- 1 microm) by approximately 2 s. Microiontophoresis (1 microm pipette tip; 1 microA, 1 s) of phenylephrine (PE) transiently increased [Ca2+]i by 479 +/- 64 nM (n = 8, P < 0.05) with constriction (26 +/- 3 microm). Flushing blood from the lumen with saline increased fluorescence at 510 nm by approximately 45% during excitation at both 340 and 380 nm with no difference in resting [Ca2+]i, diameter or respective responses to PE (n = 7). Acetylcholine microiontophoresis (1 microA, 1 s) transiently reduced resting SMC [Ca2+]i by 131 +/- 21 nM (n = 6, P < 0.05) with vasodilation (17 +/- 1 microm). Superfusion of sodium nitroprusside (10 microM) transiently reduced SMC [Ca2+]i by 124 +/- 18 nM (n = 6, P < 0.05), whereas dilation (23 +/- 5 microm) was sustained. Resolution of arteriolar SMC [Ca2+]i in vivo discriminates key signaling events that govern the local control of tissue blood flow.  相似文献   

9.
Muscarinic m3 receptor-mediated changes in cytosolic Ca2+ concentration ([Ca2+]l) occur by activation of Ca2+ release channels present in the endoplasmic reticulum membrane and Ca2+ entry pathways across the plasma membrane. In this report we demonstrate the coupling of m3 muscarinic receptors to the activation of a voltage-insensitive, cation-selective channel of low conductance (3.2 ± 0.6 pS; 25 mm Ca2+ as charge carrier) in a fibroblast cell line expressing m3 muscarinic receptor clone (A9m3 cells). Carbachol (CCh)-induced activation of the cation-selective channel occurred both in whole cell and excised membrane patches (CCh on the external side), suggesting that the underlying mechanism involves receptor-channel coupling independent of intracellular messengers. In excised inside-out membrane patches from nonstimulated A9m3 cells GTP (10 μm) and GDP (10 μm) activated cation-selective channels with conductances of approximately 4.3 and 3.3 pS, (25 mm Ca2+ as charge carrier) respectively. In contrast, ATP (10 μm), UTP (10 μm) or CTP (10 μm) failed to activate the channel. Taken together, these results suggest that carbachol and guanine nucleotides regulate the activation of a cation channel that conducts calcium. Received: 14 November 1996/Revised: 4 April 1997  相似文献   

10.
Cui XL  Chen HZ  Wu BW 《生理学报》2007,59(5):667-673
为研究氨甲酰胆碱(carbachol,CCh)对大鼠心肌细胞的正性肌力作用机制,利用电压钳方法观察CCh对急性分离的单个大鼠心肌细胞L-型钙电流(足扎)和钠,钙交换电流(INa/Ca)的影响。细胞负载Fura-2/AM后,用离子成像系统测定场刺激下单个大鼠心肌细胞的钙瞬变和细胞缩短。结果表明,100ILmol/LCCh使正向INa/Ca从(1.18±0.57)pA/pF增加到(1.65±0.52)pA/pF(P〈O.01),反向,INa/Ca从(1.11±0.49)pA/pF增加到(1.53±0.52)pA/pF(P〈O.01),但不影响ICa,L。阿托品(非选择性M胆碱受体拮抗剂)和methoctramine(选择性M2胆碱受体拮抗剂)可阻断这种增加作用。100μmol/LCCh使钙瞬变从对照组的203.8±50.0增加到234.8±64.3,使细胞缩短从对照组的(3.00±0.67)μm增加到(3.55±1.21)μm。KB-R7943(选择性反向INa/Ca抑制剂)不影响钙瞬变和细胞缩短的基础水平,却完全阻断CCh引起的钙瞬变和细胞缩短的增加。尼卡地平(ICa,L抑制剂)抑制钙瞬变和细胞缩短。CCh在尼卡地平存在下仍可增加钙瞬变和细胞缩短值,提示其正性肌力作用是通过刺激钠,钙交换实现的。CCh不改变钙敏感性。阿托品和methoctramine阻断CCh的这种激动作用,说明CCh的正性肌力作用是通过M2受体实现的。以上结果提示,CCh对大鼠心肌细胞有正性肌力作用,这种作用是通过激动反向钠/钙交换实现,由M2受体介导。  相似文献   

11.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

12.
Changes in the cytosolic free Ca2+ concentration, [Ca2+]i, have been proposed to mediate the regulation of the secretion of pituitary hormones by hypothalamic peptides. Using an intracellularly trapped fluorescent Ca2+ probe, quin2, [Ca2+]i was monitored in GH3 cells. Somatostatin lowers [Ca2+]i in a dose dependent manner from a prestimulatory level of 120 +/- 4 nM (SEM, n = 13) to 78 +/- 9 nM (n = 5) at 10(-7)M; the effect is half maximal at 2 X 10(-9) M somatostatin. The decrease in [Ca2+]i occurs rapidly after somatostatin addition and a lowered steady state [Ca2+]i is maintained for several minutes. Somatostatin does not inhibit the rapid rise in [Ca2+]i elicited by thyrotropin releasing hormone (TRH) and can still cause a decrease in [Ca2+]i in the presence of TRH (10(-7)M). Concomitantly with its action on [Ca2+]i somatostatin causes hyperpolarization of GH3 cells assessed with the fluorescent probe bis-oxonol. The lowering of [Ca2+]i by somatostatin is however not only due to reduced Ca2+ influx through voltage dependent Ca2+ channels, since it persists in the presence of the channel blocker verapamil. These results suggest that somatostatin may exert its inhibitory action on pituitary hormone secretion by decreasing [Ca2+]i.  相似文献   

13.
The muscarinic agonist, carbachol (CCh), was shown to stimulate the production of inositol phosphates (IP) in isolated cells from rabbit fundic mucosa. This stimulatory effect was time- and dose-dependent: EC50 values for IP1, IP2 and IP3 accumulation were not statistically different. The mean value was 30 +/- 8 microM (n = 6). The corresponding maximal stimulation (% of basal value) observed after 20 min incubation in the presence of 100 microM CCh was 160 +/- 15%. CCh-induced IP accumulation was abolished by atropine (Ki = 0.32 +/- 0.18 nM (n = 3)). The CCh concentrations leading to half-maximal inhibition of N-[3H]methylscopolamine binding and half-maximal IP accumulation were similar. The half-maximal value for CCh-induced aminopyrine accumulation was 8-times lower. These results indicate that IP3-mediated mobilization of intracellular Ca2+ might be involved in CCh-induced acid secretion by parietal cells.  相似文献   

14.
The aim of the present work was to study the sexual differences in secretory mechanisms and intracellular calcium ion dynamics in the Harderian gland of the golden hamster. In both sexes the Harderian gland consisted of small and large lobes. In the intact control male glands the secretory portions of both lobes showed wide lumina that contained secretory material and cytoplasmic fragments, suggestive of the occurrence of exocytosis and apocrine secretion. After perfusion with HEPES-buffered Ringer's solution containing 10 microM carbamylcholine (CCh), the glandular cells showed features of enhanced secretion and a rise in intracellular calcium concentration ([Ca2+]i). In the intact control female gland the lumina of most secretory portions in the large lobe contained porphyrin accretions, and exocytosis was the sole secretory mechanism. Stimulation of the large lobe with 10 microM CCh did not raise [Ca2+]i or cause enhanced secretion. The small lobe in females resembled the male gland in secretory functions, and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration in males abolished apocrine secretion; exocytosis became the sole secretory mechanism, and stimulation of the glandular cells with CCh did not cause enhanced secretion or induce a rise in [Ca2+]i. To the contrary, in females, castration restored apocrine secretion and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration did not affect the secretory mechanisms and the effect of CCh on the glandular cells in the small lobes of both male and female glands. The present study points to the possibility that sex hormones may control the functioning or expression of muscarinic receptors in the Harderian gland of the golden hamster.  相似文献   

15.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

16.
To determine if there was a role for the submucosal nerves in cholera toxin (CT)-induced secretion, we studied the effects of serosal addition of two neurotoxins, the nerve conduction blocking agent, tetrodotoxin (TTX), and the nicotinic ganglionic blocking agent, hexamethonium (HXM), on electrolyte secretion in control isolated rabbit ileum and in that stimulated by CT. 1). In the absence of CT, the short circuit current (Isc) decreased after TTX (10(-7) M) (P less than 0.01) and was unaltered by HXM (10(-5) M). In the presence of CT, Isc increased but was not modified by 10(-7) M TTX or 10(-5) M HXM. 2) In control tissues the mean isotopic Na+ and Cl- fluxes were not significantly altered by TTX addition. Cl- absorption alone was significantly reduced by HXM (delta JCl- = 1.95 +/- 0.81 microEq.hr-1.cm-2; P less than 0.02). After stimulation with CT, TTX significantly inhibited Na+ and Cl- secretion (delta JNa+ = 2.15 +/- 0.61 and delta JCl- = 2.15 +/- 0.76 microEq.hr-1.cm-2; P less than 0.01). Similarly, HXM significantly inhibited CT-stimulated Na+ and Cl- secretion (delta JNa+ = 1.73 +/- 0.70 and delta JCl- = 1.46 +/- 0.62 microEq.hr-1.cm-2; P less than 0.02). 3) In TTX and HXM treated tissues there was no difference in the increase in Isc caused by cAMP (2 x 10(-3) M), calcium ionophore A 23187 (4 x 10(-6) M) and glucose (10(-3) M) compared to the untreated tissues in the presence or absence of CT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We studied the effect of maturation on potassium-induced parasympathetic activation and Ca2+ entry in tracheal smooth muscle (TSM) from fifteen 2-wk-old (2ws) and sixteen 10-wk-old (10ws) male domestic farm swine. Atropine (10(-7) M) caused inhibition of the maximal contraction elicited by potassium to 50.3 +/- 2.6% maximum of control response (P less than 0.001) in TSM from 2ws but had no significant effect in TSM from 10ws (94.6 +/- 4.2% maximum; P = NS vs. control). Verapamil (10(-7) M) plus 10(-7) M atropine reduced contraction elicited by potassium in both 2ws (23.7 +/- 5.8% maximum; P less than 0.001 vs. control) and 10ws (50.6 +/- 6.3% maximum; P less than 0.001 vs. control, P less than 0.05 vs. 2ws); 10(-6)M verapamil caused greater than 95% blockade of contraction caused by potassium in both 2ws and 10ws. In separate studies, atropine-treated strips were equilibrated with extracellular Ca2+ concentrations ([Ca2+]o) ranging from normal (1X [Ca2+]o) to four times normal (4x [Ca2+]o). Increasing [Ca2+]o increased maximal contractile response in atropine-treated TSM strips from 68.7 +/- 3.8% maximum for 1x [Ca2+]o to 100.8 +/- 4.8% maximum for 4x [Ca2+]o (P less than 0.001) in 2ws. Neither atropine nor [Ca2+]o affected maximal responses of TSM in 10ws (103.5 +/- 3.0% maximum for 1x [Ca2+]o; P = NS vs. control). However, in the presence of atropine and verapamil, 4x [Ca2+]o augmented KCl-elicited contraction of TSM from both 2ws (46.9 +/- 6.3% maximum; P less than 0.01 vs. control) and 10ws (78.6 +/- 2.3% maximum; P less than 0.005 vs. control).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We studied the effects of arachidonic acid (AA) on Cl secretion across primary cultures of dog tracheal epithelium. Cell sheets showed mean values for baseline short-circuit current (Isc) and transepithelial resistance of 33.8 muA/cm2 and 360 omega.cm2 (n = 44). AA (5 x 10(-5) M) added to both sides increased Isc by 27.8 +/- 5.2 muA/cm2 (mean +/- SE, n = 8), and elevated intracellular cAMP levels. In the presence of 5 x 10(-6) M of both indomethacin (INDO) and nordihydroguaiaretic acid (NDGA) (inhibitors of cyclooxygenase and lipoxygenase, respectively), AA reduced Isc by 4.4 +/- 0.6 muA/cm2 (n = 10) without changing cAMP. Both INDO and NDGA were necessary to abolish the Isc increase in response to AA. The effects of AA on Isc were unaffected by amiloride. In the presence of INDO and NDGA, isoproterenol (ISO) raised cAMP and increased Isc by 27.6 +/- 4.3 (transient) and 12.8 +/- 3.2 muA/cm2 (sustained) (n = 9). With AA present as well as INDO and NDGA, the transient and sustained responses to ISO were significantly reduced to 13.2 +/- 2.4 and 3.9 +/- 0.8 muA/cm2 (n = 10), respectively; the increase in cAMP was unaltered. AA approximately halved baseline efflux of 125I from confluent cell sheets in high K medium and reduced the isoproterenol-induced increase in efflux to 20% of control. These data are consistent with the reported inhibitory effect of AA on apical membrane chloride channels.  相似文献   

19.
Noncyclooxygenase metabolites of arachidonic acid may be potent modulators of the mitogenic response of renal mesangial cells to the mitogenic vasoactive peptide arginine vasopressin (AVP). Since Ca2+ is a critical second messenger in the response of mesangial cells to AVP, and Ca2+ has been implicated in the regulation of growth, we determined whether noncyclooxygenase metabolites altered the phospholipase C-Ca2+ signalling cascade which is activated by AVP. Pretreatment of mesangial cells for 10 min with lipoxygenase and cytochrome P450 monooxygenase inhibitors, nordihydroguaiaretic acid (NDGA, 10(-5) M) or SKF-525A (2.5 x 10(-5) M), but not the cyclooxygenase inhibitor indomethacin (2 x 10(-5) M), reduced the magnitude of the AVP (10(-8) and 10(-7) M)-induced increase in cytosolic free Ca2+ concentration ([Ca2+]i) without affecting inositol trisphosphate production. With 10(-8) M AVP, [Ca2+]i increased to 250 +/- 47 nM in NDGA-treated cells versus 401 +/- 59 nM in control cells (p less than 0.01). [Ca2+]i, measured 2 min after exposure to AVP, was also lower with NDGA (152 +/- 21 nM) when compared with AVP alone (220 +/- 22 nM, p less than 0.01). 14,15-epoxyeicosatrienoic acid (EET) (10(-8) M), which had no effect on inositol trisphosphate production, completely reversed the NDGA-induced inhibition of the [Ca2+]i transient, whereas 5-hydroperoxyeicosatetraenoic acid (HPETE) (5 x 10(-7) M) did not. Pretreatment with higher concentrations of 14,15-EET (10(-7)-10(-6) M) markedly potentiated the AVP-induced increase in [Ca2+]i. NDGA-induced inhibition of the AVP-generated [Ca2+]i transient was also observed when cells were incubated in low Ca2+ media ([Ca2+] less than 5 x 10(-8) M), suggesting that NDGA pretreatment impaired intracellular release of Ca2+. Since NDGA had no direct effect on inositol 1,4,5-trisphosphate-induced Ca2+ release, we postulated that NDGA blocked production of a metabolite that releases Ca2+ from intracellular stores. 14,15-EET and 15-HPETE, but not 15-hydroxyeicosatetraenoic acid (each at 3 x 10(-7) M), raised [Ca2+]i when added directly to cells in low Ca2+ media. In permeabilized cells 14,15-EET and 15-HPETE (10(-7) M) potently released Ca2+ from intracellular stores. In summary, noncyclooxygenase metabolites of arachidonic acid, and in particular P450 metabolites, are potent endogenous amplifiers of the AVP-induced [Ca2+]i signal by mechanisms not directly involving phospholipase C activation. This effect is mediated, at least in part, by enhanced release of Ca2+ from intracellular storage sites by an inositol 1,4,5-trisphosphate-independent mechanism.  相似文献   

20.
Urotensin-II (U-II), a peptide with multiple vascular effects, is detected in cholinergic neurons of the rat brainstem and spinal cord. Here, the effects of U-II on [Ca2+]i was examined in dissociated rat spinal cord neurons by fura 2 microfluorimetry. The neurons investigated were choline acetyltransferase-positive and had morphological features of motoneurons. U-II induced [Ca2+]i increases in these neurons with a threshold of 10-9 m, and a maximal effect at 10-6 m with an estimated EC50 of 6.2 x 10-9 m. The [Ca2+]i increase induced by U-II was mainly caused by Ca2+ influx from extracellular space, as the response was markedly attenuated in a Ca2+-free medium. Omega-conotoxin GVIA (10-7 m), a N-type Ca2+ channel blocker, largely inhibited these increases, whereas the P/Q Ca2+ channel blocker, omega-conotoxin GVIIC (10-7 m) and the l-type Ca2+ channel blocker, verapamil (10-5 m) had minimal effects. Down-regulation of protein kinase C by 4-alpha-phorbol 12-myristate 13-acetate (10-6 m) or enzyme inhibition using the specific inhibitor bisindolylmaleimide I (10-6 m) did not inhibit the observed effects. Similarly, inhibition of protein kinase G with KT5823 (10-6 m) or Rp-8-pCPT-cGMPS (3 x 10-5 m) did not modify U-II-induced [Ca2+]i increases. In contrast, protein kinase A inhibitors KT5720 (10-6 m) and Rp-cAMPS (3 x 10-5 m) reduced the response to 25 +/- 3% and 42 +/- 8%, respectively. Present results demonstrate that U-II modulates [Ca2+]i in rat spinal cord neurons via protein kinase A cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号