首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The origin of birds and powered flight is a classic major evolutionary transition. Research on their origin often focuses on the evolution of the wing with trends of forelimb elongation traced back through many nonavian maniraptoran dinosaurs. We present evidence that the relative forelimb elongation within avian antecedents is primarily due to allometry and is instead driven by a reduction in body size. Once body size is factored out, there is no trend of increasing forelimb length until the origin of birds. We report that early birds and nonavian theropods have significantly different scaling relationships within the forelimb and hindlimb skeleton. Ancestral forelimb and hindlimb allometric scaling to body size is rapidly decoupled at the origin of birds, when wings significantly elongate, by evolving a positive allometric relationship with body size from an ancestrally negative allometric pattern and legs significantly shorten by keeping a similar, near isometric relationship but with a reduced intercept. These results have implications for the evolution of powered flight and early diversification of birds. They suggest that their limb lengths first had to be dissociated from general body size scaling before expanding to the wide range of fore and hindlimb shapes and sizes present in today's birds.  相似文献   

2.
Intermittent flight through flap‐gliding (alternating flapping phases and gliding phases with spread wings) or bounding (flapping and ballistic phases with wings folded against the body) are strategies to optimize aerial efficiency which are commonly used among small birds today. The broad morphological disparity of Mesozoic birds suggests that a range of aerial strategies could have evolved early in avian evolution. Based on biomechanics and aerodynamic theory, this study reconstructs the flight modes of two small enantiornithines from the Lower Cretaceous fossil site of Las Hoyas (Spain): Concornis lacustris and Eoalulavis hoyasi. Our results show that the short length of their wings in relation to their body masses were suitable for flying through strict flapping and intermittent bounds, but not through facultative glides. Aerodynamic models indicate that the power margins of these birds were sufficient to sustain bounding flight. Our results thus suggest that C. lacustris and E. hoyasi would have increased aerial efficiency through bounding flight, just as many small passerines and woodpeckers do today. Intermittent bounding appears to have evolved early in the evolutionary history of birds, at least 126 million years ago.  相似文献   

3.
The evolution of avian flight can be interpreted by analyzing the sequence of modifications of the primitive tetrapod locomotor system through time. Herein, we introduce the term “locomotor module” to identify anatomical subregions of the musculoskeletal system that are highly integrated and act as functional units during locomotion. The first tetrapods, which employed lateral undulations of the entire body and appendages, had one large locomotor module. Basal dinosaurs and theropods were bipedal and possessed a smaller locomotor module consisting of the hind limb and tail. Bird flight evolved as the superimposition of a second (aerial) locomotor capability onto the ancestral (terrestrial) theropod body plan. Although the origin of the wing module was the primary innovation, alterations in the terrestrial system were also significant. We propose that the primitive theropod locomotor module was functionally and anatomically subdivided into separate pelvic and caudal locomotor modules. This decoupling freed the tail to attain a new and intimate affiliation with the forelimb during flight, a configuration unique to birds. Thus, the evolution of flight can be viewed as the origin and novel association of locomotor modules. Differential elaboration of these modules in various lineages has produced the diverse locomotor abilities of modern birds.  相似文献   

4.
We examine the relationships between primary feather length (f(prim)) and total arm length (ta) (sum of humerus, ulna and manus lengths) in Mesozoic fossil birds to address one aspect of avian wing shape evolution. Analyses show that there are significant differences in the composition of the wing between the known lineages of basal birds and that mean f(prim) (relative to ta length) is significantly shorter in Archaeopteryx and enantiornithines than it is in Confuciusornithidae and in living birds. Based on outgroup comparisons with nonavian theropods that preserve forelimb primary feathers, we show that the possession of a relatively shorter f(prim) (relative to ta length) must be the primitive condition for Aves. There is also a clear phylogenetic trend in relative primary feather length throughout bird evolution: our analyses demonstrate that the f(prim)/ta ratio increases among successive lineages of Mesozoic birds towards the crown of the tree ('modern birds'; Neornithes). Variance in this ratio also coincides with the enormous evolutionary radiation at the base of Neornithes. Because the f(prim)/ta ratio is linked to flight mode and performance in living birds, further comparisons of wing proportions among Mesozoic avians will prove informative and certainly imply that the aerial locomotion of the Early Cretaceous Confuciusornis was very different to other extinct and living birds.  相似文献   

5.
Aerodynamic theory postulates that gliding airspeed, a major flight performance component for soaring avian migrants, scales with bird size and wing morphology. We tested this prediction, and the role of gliding altitude and soaring conditions, using atmospheric simulations and radar tracks of 1346 birds from 12 species. Gliding airspeed did not scale with bird size and wing morphology, and unexpectedly converged to a narrow range. To explain this discrepancy, we propose that soaring‐gliding birds adjust their gliding airspeed according to the risk of grounding or switching to costly flapping flight. Introducing the Risk Aversion Flight Index (RAFI, the ratio of actual to theoretical risk‐averse gliding airspeed), we found that inter‐ and intraspecific variation in RAFI positively correlated with wing loading, and negatively correlated with convective thermal conditions and gliding altitude, respectively. We propose that risk‐sensitive behaviour modulates the evolution (morphology) and ecology (response to environmental conditions) of bird soaring flight.  相似文献   

6.
Flapping flight has evolved independently in three vertebrate clades: pterosaurs, birds and bats. Each clade has a unique flight mechanism involving different elements of the forelimb. Here, patterns of limb integration are examined using partial correlation analysis within species and matrix correlation analysis across species to test whether the evolution of flapping flight has involved developmental dissociation of the serial homologues in the fore- and hind limb in each clade. Our sample included seven species of birds, six species of bats, and three species of pterosaurs for which sufficient sample sizes were available. Our results showed that, in contrast to results previously reported for quadrupedal mammals, none of the three clades demonstrated significant integration between serial homologues in the fore- and hind limb. Unexpectedly, there were few consistent patterns of within-forelimb correlations across each clade, suggesting that wing integration is not strongly constrained by functional relationships. However, there was significant integration within the hind limbs of pterosaurs and birds, but not bats, possibly reflecting the differing functions of hind limbs (e.g. upright support vs. suspension) in these clades.  相似文献   

7.
Developing animals are particularly vulnerable to predation. Hence, precocial young of many taxa develop predator escape performance that rivals that of adults. Ontogenetically unique among vertebrates, birds transition from hind limb to forelimb dependence for escape behaviours, so developmental investment for immediate gains in running performance may impair flight performance later. Here, in a three-dimensional kinematic study of developing birds performing pre-flight flapping locomotor behaviours, wing-assisted incline running (WAIR) and a newly described behaviour, controlled flapping descent (CFD), we define three stages of locomotor ontogeny in a model gallinaceous bird (Alectoris chukar). In stage I (1–7 days post-hatching (dph)) birds crawl quadrupedally during ascents, and their flapping fails to reduce their acceleration during aerial descents. Stage II (8–19 dph) birds use symmetric wing beats during WAIR, and in CFD significantly reduce acceleration while controlling body pitch to land on their feet. In stage III (20 dph to adults), birds are capable of vertical WAIR and level-powered flight. In contrast to altricial species, which first fly when nearly at adult mass, we show that in a precocial bird the major requirements for flight (i.e. high power output, wing control and wing size) convene by around 8 dph (at ca 5% of adult mass) and yield significant gains in escape performance: immature chukars can fly by 20 dph, at only about 12 per cent of adult mass.  相似文献   

8.
D. W. Yalden 《Ibis》1971,113(3):349-356
Estimates for the wing span, mass and wing area of Archaeopteryx lithographica are provided, and these are used to derive certain of the flight parameters. From the data available on the lengths of skeletal components, amplified by examination of casts of the specimens and full-size enlargements of photographs, the wing span is estimated at 58–59 cm and the wing area as 479 cm2. To judge from animals of similar size, the mass was probably about 200 g. These figures give an estimated minimum flying speed of 7-6 m/sec and a wing loading of 0–42 gf/cm2. These figures are, and must be from their method of derivation, comparable with those of similar sized modern birds, These data are used to reconsider the possibility of flapping flight in this bird. It is suggested that the primitive anatomy of the pectoral skeleton has been somewhat over-emphasized, and it is shown that the pectoral crest on the humerus was relatively very large compared with modern birds. The power required to fly would require muscular physiology outside the range of mammalian (at least, human) capability, but well within the modern avian range. It is felt that Archaeopteryx was capable of flapping flight, but that it was probably not long sustained.  相似文献   

9.
Wang X  McGowan AJ  Dyke GJ 《PloS one》2011,6(12):e28672
We investigated the relationship between wing element proportions and flight mode in a dataset of living avian species to provide a framework for making basic estimates of the range of flight styles evolved by Mesozoic birds. Our results show that feather length (f(prim)) and total arm length (ta) (sum of the humerus, ulna and manus length) ratios differ significantly between four flight style groups defined and widely used for living birds and as a result are predictive for fossils. This was confirmed using multivariate ordination analyses, with four wing elements (humerus, ulna/radius, manus, primary feathers), that discriminate the four broad flight styles within living birds. Among the variables tested, manus length is closely correlated with wing size, yet is the poorest predictor for flight style, suggesting that the shape of the bones in the hand wing is most important in determining flight style. Wing bone thickness (shape) must vary with wing beat strength, with weaker forces requiring less bone. Finally, we show that by incorporating data from Mesozoic birds, multivariate ordination analyses can be used to predict the flight styles of fossils.  相似文献   

10.
Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg performance, and that aerodynamically active, flapping wings might better be viewed as adaptations or exaptations for enhancing leg performance.  相似文献   

11.
Evolutionary innovations are central to debates about biological uniformitarianism because their very novelty implies a distinct evolutionary dynamic. Traditional scenarios for innovations in the development of avian powered flight exemplify the kinds of distinctions considered to occur at different times during the history of innovations. Thus, the progressive change of the wing stroke mechanism early in its evolution is considered to have imposed strong functional and historical constraints on tail shape diversity, whereas attainment of the modern flight stroke mechanism is considered to have liberated the tail to radiate into a wide variety of other functions and forms. Detailed analyses of living hummingbirds revealed that these highly aerial birds actually expressed many parallel functional constraints and historically progressive patterns observed earlier in avian history: (1) more basal lineages had relatively weak wing muscles (patagial muscles and tendons, TPB), convex to square tails, and more linear flight employed in nonterritorial foraging; (2) more derived lineages had a stronger TPB, forked tails, accentuated growth of tail fork, and more manoeuvrable and agile flight employed in territorial foraging; and (3) the most derived lineage had the strongest TPB, greatly reduced tails, and mainly bee-like flight. These associations make functional sense because convex tails increase stability and efficiency in linear flight, concave tails augment lift for turning flight in territorial defence, and tails become aerodynamically disadvantageous if the wings provide sufficient lift. Derived hummingbird lineages also demonstrated the same expansion of tail shape and taxonomic diversity associated with perfection of the modern wing stroke mechanism earlier in avian history. Thus, living hummingbirds are a microcosm of overall avian flight evolution. Other living avian (‘aerial courser') and extinct reptilian (Pterosaur) clades with extraordinary flight abilities provide evidence for similar patterns, suggesting a broadly defined uniformitarianism (early constraint followed by later radiation) at the limits of the flight performance envelope throughout vertebrate history. Correlated evolution of TPB and tail form suggests that natural selection on an integrated flight system was the principal mechanism fostering the avian patterns, although strengthening of wing muscles in derived lineages may have facilitated expansion of caudal morphological diversity through a balance between natural and sexual selection on males. These findings suggest that wing muscles, locomotor integration, and phylogenetic patterns are essential for understanding function and adaptation of tails in living as well as ancient birds. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97 , 467–493.  相似文献   

12.
Avian wing elements have been shown to experience both dorsoventral bending and torsional loads during flapping flight. However, not all birds use continuous flapping as a primary flight strategy. The pelecaniforms exhibit extraordinary diversity in flight mode, utilizing flapping, flap‐gliding, and soaring. Here we (1) characterize the cross‐sectional geometry of the three main wing bone (humerus, ulna, carpometacarpus), (2) use elements of beam theory to estimate resistance to loading, and (3) examine patterns of variation in hypothesized loading resistance relative to flight and diving mode in 16 species of pelecaniform birds. Patterns emerge that are common to all species, as well as some characteristics that are flight‐ and diving‐mode specific. In all birds examined, the distal most wing segment (carpometacarpus) is the most elliptical (relatively high Imax/Imin) at mid‐shaft, suggesting a shape optimized to resist bending loads in a dorsoventral direction. As primary flight feathers attach at an oblique angle relative to the long axis of the carpometacarpus, they are likely responsible for inducing bending of this element during flight. Moreover, among flight modes examined the flapping group (cormorants) exhibits more elliptical humeri and carpometacarpi than other flight modes, perhaps pertaining to the higher frequency of bending loads in these elements. The soaring birds (pelicans and gannets) exhibit wing elements with near‐circular cross‐sections and higher polar moments of area than in the flap and flap‐gliding birds, suggesting shapes optimized to offer increased resistance to torsional loads. This analysis of cross‐sectional geometry has enhanced our interpretation of how the wing elements are being loaded and ultimately how they are being used during normal activities. J. Morphol., 2011. © 2011 Wiley‐Liss,Inc.  相似文献   

13.
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s?1, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.  相似文献   

14.
The wing kinematics of birds vary systematically with body size, but we still, after several decades of research, lack a clear mechanistic understanding of the aerodynamic selection pressures that shape them. Swimming and flying animals have recently been shown to cruise at Strouhal numbers (St) corresponding to a regime of vortex growth and shedding in which the propulsive efficiency of flapping foils peaks (St approximately fA/U, where f is wingbeat frequency, U is cruising speed and A approximately bsin(theta/2) is stroke amplitude, in which b is wingspan and theta is stroke angle). We show that St is a simple and accurate predictor of wingbeat frequency in birds. The Strouhal numbers of cruising birds have converged on the lower end of the range 0.2 < St < 0.4 associated with high propulsive efficiency. Stroke angle scales as theta approximately 67b-0.24, so wingbeat frequency can be predicted as f approximately St.U/bsin(33.5b-0.24), with St0.21 and St0.25 for direct and intermittent fliers, respectively. This simple aerodynamic model predicts wingbeat frequency better than any other relationship proposed to date, explaining 90% of the observed variance in a sample of 60 bird species. Avian wing kinematics therefore appear to have been tuned by natural selection for high aerodynamic efficiency: physical and physiological constraints upon wing kinematics must be reconsidered in this light.  相似文献   

15.
The avian wrist is extraordinarily adapted for flight. Its intricate osteology is constructed to perform four very different, but extremely important, flight-related functions. (1) Throughout the downstroke, the cuneiform transmits force from the carpometacarpus to the ulna and prevents the manus from hyperpronating. (2) While gliding or maneuvering, the scapholunar interlocks with the carpometacarpus and prevents the manus from supinating. By employing both carpal bones simultaneously birds can lock the manus into place during flight. (3) Throughout the downstroke-upstroke transition, the articular ridge on the distal extremity of the ulna, in conjuction with the cuneiform, guides the manus from the plane of the wing toward the body. (4) During take-off or landing, the upstroke of some heavy birds exhibits a pronounced flick of the manus. The backward component of this flick is produced by reversing the wrist mechanism that enables the manus to rotate toward the body during the early upstroke. The upward component of the flick is generated by mechanical interplay between the ventral ramus of the cuneiform, the ventral ridge of the carpometacarpus, and the ulnocarpo-metacarpal ligament. Without the highly specialized osteology of the wrist it is doubtful that birds would be able to carry out successfully the wing motions associated with flapping flight. Yet in Archaeopteryx, the wrist displays a very different morphology that lacks all the key features found in the modern avian wrist. Therefore, Archaeopteryx was probably incapable of executing the kinematics of modern avian powered flight.  相似文献   

16.
Billions of birds migrate to exploit seasonally available resources. The ranges of migration vary greatly among species, but the underlying mechanisms are poorly understood. I hypothesise that flight mode (flapping or soaring) and body mass affect migration range through their influence on flight energetics. Here, I compiled the tracks of migratory birds (196 species, weighing 12–10 350 g) recorded by electronic tags in the last few decades. In flapping birds, migration ranges decreased with body mass, as predicted from rapidly increasing flight cost with increasing body mass. The species with higher aspect ratio and lower wing loading had larger migration ranges. In soaring birds, migration ranges were mass‐independent and larger than those of flapping birds, reflecting their low flight costs irrespective of body mass. This study demonstrates that many animal‐tracking studies are now available to explore the general patterns and the underlying mechanisms of animal migration.  相似文献   

17.
Hummingbirds (Trochilidae) are widely known for their insect-like flight strokes characterized by high wing beat frequency, small muscle strains and a highly supinated wing orientation during upstroke that allows for lift production in both halves of the stroke cycle. Here, we show that hummingbirds achieve these functional traits within the limits imposed by a vertebrate endoskeleton and muscle physiology by accentuating a wing inversion mechanism found in other birds and using long-axis rotational movement of the humerus. In hummingbirds, long-axis rotation of the humerus creates additional wing translational movement, supplementing that produced by the humeral elevation and depression movements of a typical avian flight stroke. This adaptation increases the wing-to-muscle-transmission ratio, and is emblematic of a widespread scaling trend among flying animals whereby wing-to-muscle-transmission ratio varies inversely with mass, allowing animals of vastly different sizes to accommodate aerodynamic, biomechanical and physiological constraints on muscle-powered flapping flight.  相似文献   

18.
Gravity-defying Behaviors: Identifying Models for Protoaves   总被引:4,自引:2,他引:2  
Most current phylogenetic hypotheses based upon cladistic methodologyassert that birds are the direct descendants of derived maniraptorantheropod dinosaurs, and that the origin of avian flight necessarilydeveloped within a terrestrial context (i.e., from the "groundup"). Most theoretical aerodynamic and energetic models or chronologicallyappropriate fossil data do not support these hypotheses forthe evolution of powered flight. The more traditional modelfor the origin of flight derives birds from among small arborealearly Mesozoic archosaurs ("thecodonts"). According to thismodel, protoavian ancestors developed flight in the trees viaa series of intermediate stages, such as leaping, parachuting,gliding, and flapping. This model benefits from the assemblageof living and extinct arboreal vertebrates that engage in analogousnon-powered aerial activities using elevation as a source ofgravitational energy. Recent reports of "feathered theropods"notwithstanding, the evolution of birds from any known groupof maniraptoran theropods remains equivocal.  相似文献   

19.
The origin and early evolution of birds   总被引:9,自引:0,他引:9  
Birds evolved from and are phylogenetically recognized as members of the theropod dinosaurs; their first known member is the Late Jurassic Archaeopteryx, now represented by seven skeletons and a feather, and their closest known non-avian relatives are the dromaeosaurid theropods such as Deinonychus. Bird flight is widely thought to have evolved from the trees down, but Archaeopteryx and its outgroups show no obvious arboreal or tree-climbing characters, and its wing planform and wing loading do not resemble those of gliders. The ancestors of birds were bipedal, terrestrial, agile, cursorial and carnivorous or omnivorous. Apart from a perching foot and some skeletal fusions, a great many characters that are usually considered ‘avian’ (e.g. the furcula, the elongated forearm, the laterally flexing wrist and apparently feathers) evolved in non-avian theropods for reasons unrelated to birds or to flight. Soon after Archaeopteryx, avian features such as the pygostyle, fusion of the carpometacarpus, and elongated curved pedal claws with a reversed, fully descended and opposable hallux, indicate improved flying ability and arboreal habits. In the further evolution of birds, characters related to the flight apparatus phylogenetically preceded those related to the rest of the skeleton and skull. Mesozoic birds are more diverse and numerous than thought previously and the most diverse known group of Cretaceous birds, the Enantiornithes, was not even recognized until 1981. The vast majority of Mesozoic bird groups have no Tertiary records: Enantiornithes, Hesperornithiformes, Ichthyornithiformes and several other lineages disappeared by the end of the Cretaceous. By that time, a few Linnean ‘Orders’ of extant birds had appeared, but none of these taxa belongs to extant ‘families’, and it is not until the Paleocene or (in most cases) the Eocene that the majority of extant bird ‘Orders’ are known in the fossil record. There is no evidence for a major or mass extinction of birds at the end of the Cretaceous, nor for a sudden ‘bottleneck’ in diversity that fostered the early Tertiary origination of living bird ‘Orders’.  相似文献   

20.
Electromyographic (EMG) activity was studied in American Kestrels (Falco sparverius) gliding in a windtunnel tilted to 8 degrees below the horizontal. Muscle activity was observed in Mm. biceps brachii, triceps humeralis, supracoracoideus, and pectoralis, and was absent in M. deltoideus major and M. thoracobrachialis (region of M. pectoralis). These active muscles are believed to function in holding the wing protracted and extended during gliding flight. Quantification of the EMG signals showed a lower level of activity during gliding than during flapping flight, supporting the idea that gliding is a metabolically less expensive form of locomotion than flapping flight. Comparison with the pectoralis musculature of specialized gliding and soaring birds suggests that the deep layer of the pectoralis is indeed used during gliding flight and that the slow tonic fibers found in soaring birds such as vultures represents a specialization for endurant gliding. It is hypothesized that these slow fibers should be present in the wing muscles that these birds use for wing protraction and extension, in addition to the deep layer of the pectoralis. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号