首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The ascidian tadpole larva has two brain sensory organs containing melanocytes: the otolith, a gravity receptor, and the ocellus, part of a photoreceptor. One or both of these sensory organs are absent in molgulid ascidians. We show here that developmental changes leading to the loss of sensory pigment cells occur by different mechanisms in closely related molgulid species. Sensory pigment cells are formed through a bilateral determination pathway in which two or more precursor cells are specified as an equivalence group on each side of the embryo. The precursor cells subsequently converge at the midline after neurulation and undergo cell interactions that decide the fates of the otolith and ocellus. Molgula occidentalis and M. oculata, which exhibit a tadpole larva with an otolith but lacking an ocellus, have conserved the bilateral pigment cell determination pathway. Programmed cell death (PCD) is superimposed on this pathway late in development to eliminate the ocellus precursor and supernumerary pigment cells, which do not differentiate into either an otolith or ocellus. In contrast to molgulids with tadpole larvae, no pigment cell precursors are specified on either side of the M. occulta embryo, which forms a tailless (anural) larva lacking both sensory organs, suggesting that the bilateral pigment cell determination pathway has been lost. The bilateral pigment cell determination pathway and superimposed PCD can be restored in hybrids obtained by fertilizing M. occulta eggs with M. oculata sperm, indicating control by a zygotic process. We conclude that PCD plays an important role in the evolution and development of brain sensory organs in molgulid ascidians.  相似文献   

2.
Cell lineages during embryogenesis of the ascidian Halocynthia roretzi were analyzed up until the stage where each blastomere was fated to be only a single tissue type (i.e., the tissue restricted stage) by intracellular injection of horseradish peroxidase using the iontophoretic injection method. Initially, the developmental fates of all blastomeres of the 64-cell stage embryo were examined, and thereafter, only the fates of daughter blastomeres of those blastomeres that were not tissue restricted at the 64-cell stage were traced. The developmental fates of blastomeres were highly invariant except for two candidates for "equivalence groups" (J. Kimble, J. Sulston, and J. White (1979). In "Cell Lineage, Stem Cells and Cell Determination," pp. 59-68. Elsevier, Amsterdam/New York), in which cellular interaction is suggested to be involved in the specification of the fates. The right and left a8.25 cells gave rise to the otolith and ocellus, and the right and left b8.17 cells gave rise to the spinal cord and endodermal strand in a complementary manner. No fixed relationship existed between the position of the blastomere and its derivative. Most restrictions of cell fates occurred early in cleavage. The numbers of blastomeres which generated a single type of tissue were 44 at the 64-cell stage and 94 at the 110-cell stage. Eight pairs of blastomeres had not yet become tissue restricted by the 110-cell stage. Almost complete lineages of epidermis, nervous system, muscle, mesenchyme, notochord, and endodermal tissues were described, and a fate map was constructed for the blastula. For certain tissues, the primordial cells occupied two different regions. Supplementary investigations of the lineage of muscle cells were also performed on embryos of another species, Ciona intestinalis.  相似文献   

3.
The brain of the ascidian larva comprises two pigment cells, termed the ocellus melanocyte and the otolith melanocyte. Cell lineage analysis has shown that the two bilateral pigment lineage cells (a-line blastomeres) in the animal hemisphere give rise to these melanocytes in a complementary manner. The results of the present investigation suggest that the specification of the fate of pigment cells proceeds in two distinct steps. First, the determination of pigment lineage cells requires an inductive interaction from the vegetal blastomeres of the A-line. Cell dissociation experiments demonstrated that the inductive interaction is completed by the midgastrula stage. However, the two bilaterally positioned cells destined to become the pigment cells in the first step are still equipotent at this stage in that they can give rise to either the ocellus or otolith. Thus, they constitute what is termed an "equivalence group." In the second step, the individual fates of the two cells that compose the equivalence group are determined. Namely, one cell develops into an ocellus and the other cell develops into an otolith. Photoablation of one of the pigment precursor cells at various stages indicated that the second step of determination occurs at the midtailbud stage. It is suggested that the cue to choose one of the alternative developmental pathways may be positional information that exists along the anteroposterior axis. The second step of determination is thought to be mediated by a hierarchical interaction. In the absence of this interaction, melanocyte specification proceeds along the dominant pathway that results in the differentiation of an ocellus.  相似文献   

4.
The tadpole larvae prosencephalon of the ascidian Ciona intestinalis contains a single large ventricle, along the inner walls of which lie two sensory organs: the otolith (a gravity-sensing organ) and the ocellus (a photo-sensing organ composed of a single cup-shaped pigment cell, about 20 photoreceptor cells, and three lens cells). Comparison has been drawn between the morphology and physiology of photoreceptor cells in the ascidian ocellus and the vertebrate eye. The development of vertebrate and invertebrate eyes requires the activity of several conserved genes and it is regulated by precise expression patterns and cell fate decisions common to several species. We have isolated a Ciona homeobox gene (Ci-Rx) that belongs to the paired-like class of homeobox genes. Rx genes have been identified from a variety of organisms and have been demonstrated to have a role in vertebrate eye formation. Ci-Rx is expressed in the anterior neural plate in the middle tailbud stage and subsequently in the larval stage in the sensory vesicle around the ocellus. Loss of Ci-Rx function leads to an ocellus-less phenotype that shows a loss of photosensitive swimming behavior, suggesting the important role played by Ci-Rx in basal chordate photoreceptor cell differentiation and ocellus formation. Furthermore, studies on Ci-Rx regulatory elements electroporated into Ciona embryos using LacZ or GFP as reporter genes indicate the presence of Ci-Rx in pigment cells, photoreceptors, and neurons surrounding the sensory vesicle. In Ci-Rx knocked-down larvae, neither basal swimming activity nor shadow responses develop. Thus, Rx has a role not only in pigment cells and photoreceptor formation but also in the correct development of the neuronal circuit that controls larval photosensitivity and swimming behavior. The results suggest that a Ci-Rx "retinal" territory exists, which consists of pigment cells, photoreceptors, and neurons involved in transducing the photoreceptor signals.  相似文献   

5.
Ascidians are invertebrate chordates with a larval body plan similar to that of vertebrates. The ascidian larval CNS is divided along the anteroposterior axis into sensory vesicle, neck, visceral ganglion and tail nerve cord. The anterior part of the sensory vesicle comes from the a-line animal blastomeres, whereas the remaining CNS is largely derived from the A-line vegetal blastomeres. We have analysed the role of the Ras/MEK/ERK signalling pathway in the formation of the larval CNS in the ascidian, Ciona intestinalis. We show evidence that this pathway is required, during the cleavage stages, for the acquisition of: (1) neural fates in otherwise epidermal cells (in a-line cells); and (2) the posterior identity of tail nerve cord precursors that otherwise adopt a more anterior neural character (in A-line cells). Altogether, the MEK signalling pathway appears to play evolutionary conserved roles in these processes in ascidians and vertebrates, suggesting that this may represent an ancestral chordate strategy.  相似文献   

6.
7.
Although there have been several studies on the structure of the ocellus photoreceptors in ascidian tadpole larvae using electron microscopy, the overall structure of these photoreceptor cells, especially the projection sites of the axons, has not been revealed completely. The number of photoreceptor cells is also controversial. Here, the whole structure of the ocellus photoreceptors in the larvae of the ascidian Ciona intestinalis was revealed by using an anti-arrestin (anti-Ci-Arr) antibody. The cell bodies of 30 photoreceptor cells covered the right side of the ocellus pigment cell and their outer segments extended through the pigment cell into the pigment cup. The axons of the photoreceptor cells were bundled together ventro-posteriorly in a single tract extending towards the midline. The nerve terminals diverged antero-posteriorly at the midline of the posterior sensory vesicle (SV). The Ci-arr gene was expressed throughout the SV at the embryonic mid-tailbud stage and it became restricted to the neighborhood of the ocellus pigment when ocellus pigmentation occurred. At the same time, the Ci-Arr protein was first detected, suggesting that the photoreceptor cells began to differentiate. The development of photoreceptor cells after hatching was also investigated using the anti-Ci-Arr antibody. Three hours after hatching, the photoreceptor terminals began to ramify and then expanded. Previous behavioral analysis showed that the larvae did not respond to the step-down of light until 2 h after hatching and then the photoresponse became robust. Accordingly, our results suggest that growth of the photoreceptor terminal is critical for the larvae to become photoresponsive.  相似文献   

8.
Although there have been several studies on the structure of the ocellus photoreceptors in ascidian tadpole larvae using electron microscopy, the overall structure of these photoreceptor cells, especially the projection sites of the axons, has not been revealed completely. The number of photoreceptor cells is also controversial. Here, the whole structure of the ocellus photoreceptors in the larvae of the ascidian Ciona intestinalis was revealed by using an anti‐arrestin (anti–Ci‐Arr) antibody. The cell bodies of 30 photoreceptor cells covered the right side of the ocellus pigment cell and their outer segments extended through the pigment cell into the pigment cup. The axons of the photoreceptor cells were bundled together ventro‐posteriorly in a single tract extending towards the midline. The nerve terminals diverged antero‐posteriorly at the midline of the posterior sensory vesicle (SV). The Ci‐arr gene was expressed throughout the SV at the embryonic mid‐tailbud stage and it became restricted to the neighborhood of the ocellus pigment when ocellus pigmentation occurred. At the same time, the Ci‐Arr protein was first detected, suggesting that the photoreceptor cells began to differentiate. The development of photoreceptor cells after hatching was also investigated using the anti–Ci‐Arr antibody. Three hours after hatching, the photoreceptor terminals began to ramify and then expanded. Previous behavioral analysis showed that the larvae did not respond to the step‐down of light until 2 h after hatching and then the photoresponse became robust. Accordingly, our results suggest that growth of the photoreceptor terminal is critical for the larvae to become photoresponsive. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

9.
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.  相似文献   

10.
Vital staining of mitochondria with a fluorescent dye 3,3′-diethyloxacarbocyanine was used to follow cell lineage in embryos of Phallusia mammillata. The results agree in general with the plan established by Conklin in 1905. Strong fluorescence migrated after fertilization similarly to the pigment of the “yellow crescent” in Styela. Later, fluorescence segregated into muscle cell primordia, but not into mesenchyme cells. An animal hemisphere cell, b 8.17 also exhibited strong fluorescence and joined a group of muscle primordia, very likely becoming a muscle cell itself. In the tadpole, all the tail muscle cells were fluorescent. Fluorescence was also noticed in nerve cell primordia of the vegetal hemisphere, particularly in the cell A 8.16 whose descendants appeared to become part of the sensory vesicle which was strongly fluorescent in the tadpole. The usefulness of this type of vital staining in following cell lineage of colorless embryos is stressed.  相似文献   

11.
Cellular interactions in early C. elegans embryos   总被引:8,自引:0,他引:8  
J R Priess  J N Thomson 《Cell》1987,48(2):241-250
In normal development both the anterior and posterior blastomeres in a 2-cell C. elegans embryo produce some descendants that become muscles. We show that cellular interactions appear to be necessary in order for the anterior blastomere to produce these muscles. The anterior blastomere does not produce any muscle descendants after either the posterior blastomere or one of the daughters of the posterior blastomere is removed from the egg. Moreover, we demonstrate that a daughter of the anterior blastomere that normally does not produce muscles appears capable of generating muscles when interchanged with its sister, a cell that normally does produce muscles. Embryos develop normally after these blastomeres are interchanged, suggesting that cellular interactions play a major role in determining the fates of some cells in early embryogenesis.  相似文献   

12.
Nodal signaling plays an essential role in the establishment of left–right asymmetry in various animals. However, it is largely unknown how Nodal signaling is involved in the establishment of the left–right asymmetric morphology. In this study, the role of Nodal signaling in the left–right asymmetric ocellus formation in the ascidian, Ciona intestinalis was dealt with. During the development of C. intestinalis, the ocellus pigment cell forms on the midline and moves to the right side of the midline. Then, the photoreceptor cells form on the right side of the sensory vesicle (SV). Ci-Nodal is expressed on the left side of the SV in the developing tail bud embryo. When Nodal signaling is inhibited, the ocellus pigment cell form but remain on the midline, and expression of marker genes of the ocellus photoreceptor cells is ectopically detected on the left side as well as on the right side of the SV in the larva. Furthermore, Ci-Rx, which is essential for the ocellus differentiation, turns out to be negatively regulated by the Nodal signaling on the left side of the SV, even though it is required for the right-sided photoreceptor formation. These results indicate that Nodal signaling controls the left–right asymmetric ocellus formation in the development of C. intestinalis.  相似文献   

13.
A Ciona intestinalis cDNA clone that encodes a protein highly homologous to other tyrosinases was isolated. Northern blot analysis showed that expression of Ciona tyrosinase starts at the early neurula stage and continues throughout the tail-bud and tadpole larval stages. The earliest tyrosinase expression was detected, by in situ hybridization, at the neural plate stage, in pigment precursor cells located along the two neural folds, in the animal region of the embryo. In the course of embryonic development the strong hybridization signal was always localized, within the rostral part of the developing brain, in the pigment precursor cells and was later detected in the otolith and ocellus. These results are discussed in relation to tyrosinase as an early marker of neural induction.  相似文献   

14.
We have investigated the role of the bone morphogenetic protein (BMP) pathway during neural tissue formation in the ascidian embryo. The orthologue of the BMP antagonist, chordin, was isolated from the ascidian Halocynthia roretzi. While both the expression pattern and the phenotype observed by overexpressing chordin or BMPb (the dpp-subclass BMP) do not suggest a role for these factors in neural induction, BMP/CHORDIN antagonism was found to affect neural patterning. Overexpression of BMPb induced ectopic sensory pigment cells in the brain lineages that do not normally form pigment cells and suppressed pressure organ formation within the brain. Reciprocally, overexpressing chordin suppressed pigment cell formation and induced ectopic pressure organ. We show that pigment cell formation occurs in three steps. (1) During cleavage stages ectodermal cells are neuralized by a vegetal signal that can be substituted by bFGF. (2) At the early gastrula stage, BMPb secreted from the lateral nerve cord blastomeres induces those neuralized blastomeres in close proximity to adopt a pigment cell fate. (3) At the tailbud stage, among these pigment cell precursors, BMPb induces the differentiation of specifically the anterior type of pigment cell, the otolith; while posteriorly, CHORDIN suppresses BMP activity and allows ocellus differentiation.  相似文献   

15.
Summary The cerebral and epidermal ocelli of the Müller's larva and the cerebral and tentacular eyes of the adult turbellarian Pseudoceros canadensis were studied by electron microscopy. The right cerebral ocellus of the larva consists of one cup-shaped pigmented cell and three sensory cells that bear microvilli. The left cerebral eye of the larva has the above named cells plus a sensory cell with many cilia. Evolutionary significance is attributed to the presence of both ciliary and microvillar photoreceptors in an eye of a flatworm. The one epidermal ocellus of the larva is composed of two cells: a cup-shaped pigmented one bearing flattened cilia, the presumed photoreceptors, and a cell above the cup that adds a few nonciliary lamellae to the stack of ciliary ones from the pigmented cell. The adult eyes contain only microvillar receptors; cilia were not observed.  相似文献   

16.
The relatively consistent fates of the blastomeres of the frog embryo could result from (i) predetermination of the blastomeres or (ii) reproducible morphogenetic cell movements. In some species, the mixing of the cells during development provides a test between these alternative hypotheses. If blastomeres are predetermined, then random intermixing of the descendants with neighboring cells could not alter their fate. To follow cell mixing during Xenopus development, fluorescent dextran lineage tracers were microinjected into identified blastomeres at the 16-cell stage. The labelled descendants of the injected blastomeres were followed over several stages of embryogenesis. After gastrulation, the labelled descendants formed relatively coherent groups in characteristic regions of the embryo. By larval stages, most of the labelled descendants were still located in characteristic regions. However, coherence was less pronounced and individual descendants were located in many regions of the embryo. Hence, cell mixing is a slow, but progressive, process throughout Xenopus development. This is in sharp contrast to the extensive mixing that occurs during the early development of other vertebrates, such as zebrafish and mice. The slow cell mixing in Xenopus development suggests a simple mechanism for the consistent fates of cleavage-stage blastomeres. The stereotyped cell movements of embryogenesis redistribute the largely coherent descendants to characteristic locations in the embryo. The small amount of mixing that does occur would result in variable locations of a small proportion of the descendants; this could contribute to the observed variability of the blastomere fate map. Because cell mixing during Xenopus development is insufficient to challenge possible lineage restrictions, additional experiments must be performed to establish when and if lineage restrictions occur.  相似文献   

17.
The anterior-most surface of the ascidian tadpole larvae is composed of specialized complex structures, including adhesive organs (palps) and the surrounding sensory neurons (RTENs) connected to neurons inside the palps. These are derived from a-line blastomeres by inductive effects from A-line blastomeres. The induction is reported to coordinate the expression of homeobox genes in the anterior epidermis, which can be affected by all- trans retinoic acid (RA). RA treatment also results in failure of the morphological formation of palps. Here we first isolated a gene intensely expressed in the cells of the anterior structure from the time of their lineage restriction, and then found that the RA treatment did not affect the specific gene expression in the presumptive palp cells but did affect that in the RTENs. These results suggest that the palp formation involves at least two different processes, a RA-insensitive cell-type specification process and a RA-sensitive morphogenetic process. RA treatment also affects the morphogenetic process of the palp formation and also disturbs the precise patterning of the surrounding epidermis, which may contribute to the regulation of RTEN development.  相似文献   

18.
In the ascidian embryo, the nerve cord and notochord of the tail of tadpole larvae originate from the precursor blastomeres for both tissues in the 32-cell-stage embryo. Each fate is separated into two daughter blastomeres at the next cleavage. We have examined mechanisms that are responsible for nerve cord and notochord specification through experiments involving blastomere isolation, cell dissociation, and treatment with basic fibroblast growth factor (bFGF) and inhibitors for the mitogen-activated protein kinase (MAPK) cascade. It has been shown that inductive cell interaction at the 32-cell stage is required for notochord formation. Our results show that the nerve cord fate is determined autonomously without any cell interaction. Presumptive notochord blastomeres also assume a nerve cord fate when they are isolated before induction is completed. By contrast, not only presumptive notochord blastomeres but also presumptive nerve cord blastomeres forsake their default nerve cord fate and choose the notochord fate when they are treated with bFGF. When the FGF-Ras-MAPK signaling cascade is inhibited, both blastomeres choose the default nerve cord pathway, supporting the results of blastomere isolation. Thus, binary choice of alternative fates and asymmetric division are involved in this nerve cord/notochord fate determination system, mediated by FGF signaling.  相似文献   

19.
In this paper we describe the larval morphology of two species from the ascidian family Pyuridae, Microcosmus exasperatus and Herdmania momus, with special emphasis on components of the cerebral vesicle. Larvae have not previously been described for any species in the large genus Microcosmus. Besides a difference in size (larvae of H. momus are about 40% larger than those of M. exasperatus), larvae of the two species differ primarily in the number and arrangement of sensory structures. Both species possess a well-developed statocyte but only H. momus has an ocellus. The absence of an ocellus in M. exasperatus is unique among pyurid ascidians. An auxiliary vesicle was found situated on the left side of the cerebral vesicle in both species. However, unlike the larvae of H. momus and other pyurid species, there is no apparent communication between the auxiliary and cerebral vesicles of M. exasperatus. Epithelial cells in the auxiliary vesicles of both species carry modified cilia about 2 μm in diameter; auxiliary vesicles of H. momus also have simple cilia with axonemes in a 9 + 0 microtubule configuration. In H. momus the membranes of the epithelial cells are highly convoluted and extend into the lumen of the auxiliary vesicle. Morphological arrangements of auxiliary vesicles and globular cilia reported so far in ascidian tadpoles are contrasted and discussed.  相似文献   

20.
A specific set of founder cells uniquely gives rise to the oral and aboral ectoderms in the regularly developing sea urchin Strongylocentrotus purpuratus. We showed earlier that the polar No and Na (animal oral and animal aboral) blastomeres are specified by third cleavage, while the respective oral and aboral lineage contributions of the left and right NL (animal lateral) blastomeres have not yet segregated from one another at third cleavage. Here we demonstrate by iontophoretic injection of lysyl rhodamine dextran lineage tracer that segregation of oral vs aboral cell fates in the lineages of the NL blastomeres has still not occurred by fourth cleavage, but at fifth cleavage there arise from the NL sublineages founder cells whose progeny contribute exclusively to the aboral ectoderm. The sister cells of these fifth cleavage blastomeres are founder cells that contribute exclusively to oral structures. The aboral ectoderm tracts to which NL derivatives give rise occupy lateral regions of the anterior aboral ectoderm, while the oral structures deriving from the NL blastomeres are the lateral sectors of the ciliated bands. The cells of the ciliated bands do not express aboral ectoderm markers and are considered to constitute the border of the oral region. With these new findings we complete our knowledge of the origins, identities, and fates of the 11 founder cells, the progeny of which exclusively give rise to the aboral ectoderm, and of the 5 founder cells, the progeny of which exclusively produce the oral ectoderm and its derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号