首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of A(M) subunits of lactate dehydrogenase (mainly LDH5) in developing muscle, heart, liver, lung, kidney and cartilage tissue of chicken embryos was examined by the indirect fluorescent antibody technique. Antibodies against porcine LDH5, purified by affinity chromatography, were used for this purpose. In special areas of newly formed myofibrils in somitic myoblasts fluorescence was already detected after 4 days of incubation, and located at the same place in muscle tissue of all advanced developmental stages examined. During the myotube stage of muscle development staining was also located in the peripheral thickened cytoplasma of the myotubes. The myocardium did not exhibit any fluorescent staining in the developmental stages examined. Endocardium, epicardium and pericardium, however, were fluorescent in young developmental stages. The liver showed fluorescence in 5- to 8-day embryos mainly in the endothelial cells of the blood sinusoids. In 9- to 12-day embryos the bile ducts became fluorescent. In lungs after 9- to 12-day development the epithelium and the surrounding tissues of bronchi exhibited strong immunofluorescence. The mesonephros exhibited faint granular fluorescence in tubule-forming cells and their membranes after 4–9 days of incubation. Advanced developmental stages only exhibited fluorescent blood cells. This latter staining is at least partly due to non-specific reactions of blood cell membranes with FITC-conjugated anti-rabbit IgG. Cartilage is characterized by non-specific fluorescence, but in embryos older than 8 days strong granular fluorescence of chondrocytes and staining of the perichondrium distinguished sections treated with anti-LDH5 antibodies from control sections reacted only with FITC-conjugated anti-rabbit IgG. In addition, strong fluorescent staining was detectable in certain areas of the 5-day neural tube and faint staining in the mucosa of the intestine from embryos older than 10 days.  相似文献   

2.
In order to know when the protein of Xenopus vasa homolog ( Xenopus vasa -like gene 1, XVLG1 ) first appears in germ line cells and whether the protein is also present in somatic cells as is vasa protein in Drosophila , the spatio-temporal distribution of the protein in Xenopus embryos was carefully investigated by fluorescent microscopy. Part of the observation was performed by whole-mount immunocytochemistry and immunoblotting. A distinct fluorescence of XVLG1 protein was first recognized in a juxta-nuclear location of germ line cells or presumptive primordial germ cells (pPGC) at stage 12 (late gastrula) and remained associated with the pPGC or primordial germ cells (PGC) throughout the following stages until stage 46 (feeding tadpole). In contrast, weak fluorescence was seen in the animal hemisphere rather than in the vegetal hemisphere of cleaving embryos and in the perinuclear region of somatic cells at stages 10–42 (early gastrula to young tadpole), respectively. Nearly the same pattern as revealed by fluorescence was seen by whole-mount immunocytochemistry, except that a small amount of XVLG1 protein seemed to be present in the germ plasm and pPGC of embryos earlier than stage 12. The presence of the protein in the somatic cells and the PGC was also shown by immunoblotting.  相似文献   

3.
Recent analysis of cell lineages in ascidian embryos by the intracellular injection of a tracer enzyme has clearly demonstrated that muscle cells are derived not only from the B4.1-cell pair of the eight-cell stage embryo, as has hitherto been believed, but also from both the b4.2- and A4.1-cell pairs (H. Nishida and N. Satoh, 1983, Dev. Biol.99, 382–394). In order to reexamine the developmental autonomy in muscle lineage cells, the B4.1 pair was isolated from the eight-cell stage embryo. The progeny cells of the B4.1 pair, as well as those of the six other blastomeres, were then allowed to develop in isolation into partial embryos. Autonomous muscle cell differentiation not only in partial embryos originating from the B4.1 cells but also in those from the six other blastomeres was substantiated by (a) occurrence of localized histospecific muscle acetylcholinesterase and (b) development of myofibrils. These results support the validity of the recent cell lineage study and confirmed the self-differentiation potency of muscle lineage cells in ascidian embryos according to the newly verified cell lineages.  相似文献   

4.
Antibodies to the myosin heavy chains of striated muscle were used to trace myogenic differentiation in the developing face and in cultures of cells from the facial primordia of chick embryos. In the intact face, myogenic cells differentiate first in the mandibular primordia and can be detected at stage 28. The early muscle blocks contain both fast and slow classes of myosin heavy chains. At stages 20 and 24, no myogenic cells are found in any of the facial primordia. However, when the cells are placed in micromass (high density) cultures, myogenic cells differentiate, revealing the presence of potentially myogenic cells in all the facial primordia. The number of myogenic cells bears no consistent relationship to the extent and pattern of chondrogenesis. Therefore the ability of the cell populations of the facial primordia to differentiate into cartilage when placed in culture is independent of the muscle cell lineage. The facial primordia represent a mixed cell population of neural crest and mesodermal cells from at least as early as stage 18.  相似文献   

5.
The importance of the aquaculture production is increasing with the declining global fish stocks, but early sexual maturation in several farmed species reduces muscle growth and quality, and escapees could have a negative impact on wild populations. A possible solution to these problems is the production of sterile fish by ablation of the embryonic primordial germ cells (PGCs), a technique developed in zebrafish. Cell-specific regulation of mRNA stability is crucial for proper specification of the germ cell lineage and commonly involves microRNA (miRNA)-mediated degradation of targeted mRNAs in somatic cells. This study reports on the functional roles of conserved motifs in the 3′ untranslated region (UTR) of the miRNA target gene nanos3 identified in Atlantic cod, Atlantic salmon, and zebrafish. The 3′UTR of cod nanos3 was sufficient for targeting the expression of green fluorescent protein (GFP) to the presumptive PGCs in injected embryos of the three phylogenetically distant species. 3′UTR elements of importance for PGC-specific expression were further examined by fusing truncated 3′UTR variants of cod nanos3 to GFP followed by injections in zebrafish embryos. The expression patterns of the GFP constructs in PGCs and somatic cells suggested that the proximal U-rich region is responsible for the PGC-specific stabilization of the endogenous nanos3 mRNA. Morpholino-mediated downregulation of the RNA-binding protein Dead end (DnD), a PGC-specific inhibitor of miRNA action, abolished the fluorescence of the PGCs in cod and zebrafish embryos, suggesting a conserved DnD-dependent mechanism for germ cell survival and migration.  相似文献   

6.
7.
C. elegans is proving useful for the study of cell determination in early embryos. Breeding experiments with embryonic lethal mutants show that abnormal embryogenesis often results from defective gene function in the maternal parent, suggesting that much of the information for normal embryonic development is laid down during oogenesis. Analysis of a gut-specific differentiation marker in cleavage-arrested embryos has provided evidence that the potential for this differentiation behaves as a cell-autonomous internally segregating developmental determinant, which is present from the 2-cell stage onward and is partitioned into the gut precursor cell during early cleavage divisions. Visible prelocalized cytoplasmic granules that segregate with a particular cell lineage have heen observed in the embryonic germline precursor cells by fluorescent antibody staining. Whether these granules play a role in germline determina... [remainder of abstract missing in original]  相似文献   

8.
Embryonic germ (EG) cells are cultured pluripotent stem cells derived from the primordial germ cells (PGCs) that migrate from the dorsal mesentery of the hindgut to the developing genital ridge. In this study, the morphology of the porcine genital ridge was assessed in embryos harvested on days 22–30 of pregnancy. PGCs from embryos at these stages were cultured to obtain porcine EG cell lines, and EG-like cells were derived from PGCs from embryos harvested on days 24–28 of pregnancy. The EG-like cells expressed Oct4, Sox2, Nanog, SSEA-3, SSEA-4 and alkaline phosphatase (AP). These cells were able to form embryoid bodies (EBs) in suspension culture and differentiate into cells representative of the three germ layers as verified by a-fetoprotein (AFP), α-smooth muscle actin (α-SMA), and Nestin expression. Spontaneous differentiation from the porcine EG-like cells of delayed passage in vitro showed that they could differentiate into epithelial-like cells, mesenchymal-like cells and neuron-like cells. In vitro directed differentiation generated osteocytes, adipocytes and a variety of neural lineage cells, as demonstrated by alizarin red staining, oil red O staining, and immunofluorescence for neuronal class Ⅲ β-tubulin (Tuj1), glial fibrillary protein (GFAP) and galactosylceramidase (GALC), respectively. These results indicate that porcine EG-like cells have the potential for multi-lineage differentiation and are useful for basic porcine stem cell research.  相似文献   

9.
Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs) after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP) reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3–4.3 hour post-fertilization (hpf). Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.  相似文献   

10.
Inter-regional signaling coordinates pattern formation in Arabidopsis thaliana embryos. However, little is known regarding the cells and molecules involved in inter-regional communication. We have characterized two related leucine-rich repeat receptor-like kinases (LRR-RLKs), RECEPTOR-LIKE PROTEIN KINASE1 (RPK1) and TOADSTOOL2 (TOAD2), which are required together for patterning the apical embryonic domain cell types that generate cotyledon primordia. Central domain protoderm patterning defects were always observed subjacent to the defective cotyledon primordia cell types in mutant embryos. In addition, RPK1-GFP and TOAD2-GFP translational fusions were both localized to the central domain protodermal cells when cotyledon primordia were first recognizable. We propose that RPK1 and TOAD2 are primarily required to maintain central domain protoderm cell fate and that the loss of this key embryonic cell type in mutant embryos results in patterning defects in other regions of the embryo including the failure to initiate cotyledon primordia.  相似文献   

11.
The Cre-loxP site-specific recombination system was used for cell lineage analysis in mammals. We constructed an expression plasmid, pCETZ-17, which consists of cytomegalovirus enhancer/chicken beta-actin promoter (CAG), a portion of the rabbit beta-globin gene, loxP-flanked DNA sequence (containing enhanced green fluorescent protein (EGFP) cDNA), and lacZ gene encoding E. coli beta-galactosidase (beta-gal). When circular pCETZ-17 plasmid DNA was microinjected into the pronuclei of fertilized eggs and these eggs were allowed to develop to two-cell stage, 62.8% (59/94) of the two-cell embryos exhibited distinct fluorescence in one or both blastomeres, but never expressed lacZ protein, as evaluated by histochemical staining with X-Gal, a substrate for beta-gal. When both circular plasmids, pCETZ-17 and pCAG/NCre (containing CAG and DNA sequences encoding nuclear location signal and Cre), were co-injected into fertilized eggs, almost all (87.0%, 47/54) embryos exhibited low or no fluorescence, but 51.9% (27/52) exhibited positive staining for beta-gal activity. This indicates that transient expression of the Cre recombinase gene removed the loxP-flanked DNA sequence in pCETZ-17 and then caused expression of the downstream lacZ sequence. We next microinjected pCETZ-17 into the pronuclei of fertilized eggs, cultured these injected eggs for 1 day, and collected only two-cell embryos expressing EGFP in both blastomeres. One blastomere of the EGFP-expressing two-cell embryos was microinjected with pCAG/NCre, and these treated embryos were cultured for 1 day up to four-cell stage. When the developing four-cell embryos were subjected to staining with X-Gal, cell lineage-related staining pattern for beta-gal activity was observed in most (77.8%, 7/9) embryos. These findings were further confirmed using two-cell embryos derived from a transgenic mouse line carrying CETZ-17 transgene. Thus, our system, which is based on transient expression of the Cre recombinase gene directly introduced into nuclei of embryonic cells by microinjection, is a powerful means for cell lineage analysis in mammals.  相似文献   

12.
Anural development in the ascidian Molgula occulta was examined using tissue-specific markers and interspecific hybridization. Unlike most ascidians, which develop into a swimming tadpole larva (urodele development), M. occulta eggs develop into a tailless slug-like larva (anural development) which metamorphoses into an adult. M. occulta embryos show conventional early cleavage patterns, gastrulation, and neurulation, but then diverge from the urodele developmental mode during larval morphogenesis. M. occulta larvae do not contain a pigmented sensory cell in their brain or form a tail with differentiated notochord and muscle cells. As shown by in situ hybridization with cloned probes and analysis of in vitro translation products, M. occulta embryos do not accumulate high levels of alpha actin or myosin heavy chain mRNA. In contrast, acetylcholinesterase is expressed in muscle lineage cells, indicating that various muscle cell features are differentially suppressed. M. occulta embryos also lack tyrosinase activity, suggesting that suppression of brain pigment cell differentiation occurs at an early step in development. M. occulta eggs fertilized with sperm from Molgula oculata (a closely related urodele species) develop into hybrid larvae exhibiting some of the missing urodele features. Some hybrid embryos develop tyrosinase activity and differentiate a brain pigment cell and a short row of notochord cells, and form a short tail. These urodele features appeared together or separately in different hybrid embryos suggesting that they develop by independent mechanisms. In contrast, alpha actin and myosin heavy chain mRNA accumulation was not enhanced in hybrid embryos. These results suggest that multiple mechanisms control anural development.  相似文献   

13.
Rabbit antibodies specific for the major tadpole and frog hemoglobin components of R. catesbeiana were used for the detection of the two hemoglobins inside single cells. The antisera, after fractionation by ammonium sulfate precipitation and diethylaminoethyl (DEAE)-cellulose chromatography, were conjugated with fluorescein isothiocyanate for the antifrog hemoglobin serum and tetramethylrhodamine isothiocyanate for the antitadpole hemoglobin serum. The conjugated fractions, refractionated by stepwise elution from a DEAE-cellulose column, were used for the fluorescent staining of blood smears, liver tissue imprints, and smears of liver cell suspensions. Both simultaneous and sequential staining with the two fluorescent preparations indicated that larval and adult hemoglobins were not present within the same erythrocyte during metamorphosis. In other experiments, erythroid cells from animals in metamorphosis were spread on agar containing specific antiserum. Precipitates were formed around the cells which contain the particular hemoglobin. The percentages of cells containing either tadpole or frog hemoglobin were estimated within the experimental error of the method. The data showed that the two hemoglobins are in different cells. It is concluded that the hemoglobin change observed during the metamorphosis of R. catesbeiana is due to the appearance of a new population of erythroid cells containing exclusively frog hemoglobin.  相似文献   

14.
《Gene》1996,173(1):89-98
The green fluorescent protein (GFP) acts as a vital dye upon the absorption of blue light. When the gfp gene is expressed in bacteria, flies or nematodes, green fluorescence can be directly observed in the living organism. We inserted the cDNA encoding this 238-amino-acid (aa) jellyfish protein into an expression vector containing the rat myosin light-chain enhancer (MLC-GFP) to evaluate its ability to serve as a muscle-specific marker. Transiently, as well as stably, transfected C2C12 cell lines produced high levels of GFP distributed homogeneously throughout the cytoplasm and was not toxic through several cell passages. Expression of MLC-GFP was strictly muscle-specific, since Cos 7 fibroblasts transfected with MLC-GFP did not fluoresce. When GFP and βGal markers were compared, the GFP signal was visible in the cytoplasm of the living cell, whereas visualization of βGal required fixation and resulted in deformation of the cells. When the MLC-GFP construct was injected into zebrafish embryos, muscle-specific gfp expression was apparent within 24 h of development, gfp expression was never observed in non-muscle tissues using the MLC-GFP construct. Transgenic fish continued to express high levels of gfp in skeletal muscle at 1.5 months, demonstrating that GFP is an effective marker of muscle cells in vivo.  相似文献   

15.
AN ANALYSIS OF MYOGENESIS BY THE USE OF FLUORESCENT ANTIMYOSIN   总被引:45,自引:34,他引:11       下载免费PDF全文
Antibodies against myosin of adult chicken skeletal muscle were labelled with fluorescein and used as staining reagents to analyze the development of trunk myoblasts in the chick embryo. Myoblasts from the brachial myotomes were studied in three ways: (a) Specimens were fixed, sectioned, and stained with iron-hematoxylin. (b) Living myoblasts, and myoblasts prepared by glycerol extraction, were teased and examined by phase contrast microscopy. (c) Embryo trunks were treated with fluorescent antimyosin or with a control solution of fluorescent normal globulin, and were examined by fluorescence and phase contrast microscopy. Both glycerol-extracted and fixed materials were used. Cross-striated myofibrils appeared first in stage 16 to 17 embryos in the series studied by antimyosin staining and fluorescence microscopy. Striated myofibrils appeared first in stage 18 to 19 embryos, in the series stained by iron-hematoxylin, and at stage 22 to 23, in the series studied by glycerol extraction and phase contrast microscopy. In each series, myofibrils without apparent cross-striations were detected shortly before cross-striations were observed. Specific staining by antimyosin occurred only in differentiating myoblasts. Within the myoblasts antimyosin staining was confined to the A bands of the slender myofibrils. The following observations suggest that the first delicate striated structure to appear in the early 3 day myoblast was remarkably mature: (1) The sarcomere pattern both in length and in internal detail, was similar to that of adult muscle. (2) The distribution of myosin, as revealed by antimyosin staining, was the same in the embryonic as in the mature myofibril. (3) Glycerol-extracted myoblasts contracted vigorously on exposure to ATP. The changes in sarcomere band pattern were indistinguishable from those occurring during contraction of adult muscle induced by ATP. (4) ATP contraction was blocked by prior antimyosin staining in embryonic myoblasts as in mature muscle. It is suggested that the early myofibril grows laterally as a thin sheet associated with the sarcolemma, and that growth in length occurs in the growth tips of the elongating myoblast.  相似文献   

16.
To enhance the screening efficiency and accuracy of a high-yield menaquinone (vitamin K2, MK) bacterial strain, a novel, quantitative method by fluorescence-activated cell sorting (FACS) was developed. The staining technique was optimized to maximize the differences in fluorescence signals between spontaneous and MK-accumulating cells. The fluorescence carrier rhodamine 123 (Rh123), with its ability to reflect membrane potential, proved to be an appropriate fluorescent dye to connect the MK content with fluorescence signal quantitatively. To promote adequate access of the fluorescent molecule to the target and maintain higher cell survival rates, staining and incubation conditions were optimized. The results showed that 10 % sucrose facilitated uptake of Rh123, while maintaining a certain level of cell viability. The pre-treatment of cells with MgCl2 before staining with Rh123 also improved cell viability. Using FACS, 50 thousands cells can easily be assayed in less than 1 h. The optimized staining protocol yielded a linear response for the mean fluorescence against high performance liquid chromatography-measured MK content. We have developed a novel and useful staining protocol in the high-throughput evaluation of Flavobacterium sp. mutant libraries, using FACS to identify mutants with increased MK-accumulating properties. This study also provides reference for the screening of other industrial microbial strains.  相似文献   

17.
18.
The differentiation of body-wall muscle cells was studied in the nematode Caenorhabditis elegans. Specific antibodies to myosin and paramyosin, major protein constituents of differentiated muscle, react with mesodermal cells in wild-type embryos towards the end of the first half of embryogenesis. Immunoreactive cells (2–16) first appear in embryos with 400–450 of the 550 cells present at hatching. Such embryos have developed at 25.5°C for 3–412 hr beyond the two-cell stage. As development proceeds, a maximum of 81 immunoreactive cells forms four columns running anterior-posterior. Each column is composed of two lines of tightly opposed round cells, which then elongate into spindle-shaped cells. Mutant embryos in which cleavage arrests prematurely also generate cells that produce myosin and paramyosin. The initiation of muscle differentiation appears to be independent of the number of cell or nuclear divisions within a lineage or of the proliferation of other cells. These results suggest that the biosynthesis of muscle-specific proteins by nematode embryonic muscle cells is regulated by mechanisms intrinsic to these cells.  相似文献   

19.
Gut mesodermal tissues originate from the splanchnopleural mesenchyme. However, the embryonic gastrointestinal coelomic epithelium gives rise to mesenchymal cells, whose significance and fate are little known. Our aim was to investigate the contribution of coelomic epithelium-derived cells to the intestinal development. We have used the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1cre) crossed with the Rosa26R-EYFP reporter mouse. In the gastrointestinal duct Wt1, the Wilms’ tumor suppressor gene, is specific and dynamically expressed in the coelomic epithelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP) allowing for colocalization with differentiation markers through confocal microscopy and flow cytometry. Wt1cre-YFP cells were very abundant throughout the intestine during midgestation, declining in neonates. Wt1cre-YFP cells were also transiently observed within the mucosa, being apparently released into the intestinal lumen. YFP was detected in cells contributing to intestinal vascularization (endothelium, pericytes and smooth muscle), visceral musculature (circular, longitudinal and submucosal) as well as in Cajal and Cajal-like interstitial cells. Wt1cre-YFP mesenchymal cells expressed FGF9, a critical growth factor for intestinal development, as well as PDGFRα, mainly within developing villi. Thus, a cell population derived from the coelomic epithelium incorporates to the gut mesenchyme and contribute to a variety of intestinal tissues, probably playing also a signaling role. Our results support the origin of interstitial cells of Cajal and visceral circular muscle from a common progenitor expressing anoctamin-1 and SMCα-actin. Coelomic-derived cells contribute to the differentiation of at least a part of the interstitial cells of Cajal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号