首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Granin-family proteins, including chromogranin A (CgA) and secretogranin III (SgIII), are transported to secretory granules (SGs) in neuroendocrine cells. We previously showed that SgIII binds strongly to CgA in an intragranular milieu and targets CgA to SGs in pituitary and pancreatic endocrine cells. In this study, we demonstrated that with a sucrose density gradient of rat insulinoma-derived INS-1 cell homogenates, SgIII was localized to the SG fraction and was fractionated to the SG membrane (SGM) despite lacking the transmembrane region. With depletion of cholesterol from the SGM using methyl-beta-cyclodextrin, SgIII was impaired to bind to the SGM. Both SgIII and CgA were solubilized from the SGM by Triton X-100 in contrast to the Triton X-100 insolubility of carboxypeptidase E. SgIII and carboxypeptidase E strongly bound to the SGM-type liposome in intragranular conditions, but CgA did not. Instead, CgA bound to the SGM-type liposome only in the presence of SgIII. Immunocytochemical and pulse-chase experiments revealed that SgIII deleting the N-terminal lipid-binding region missorted to the constitutive pathway in mouse corticotroph-derived AtT-20 cells. Thus, we suggest that SgIII directly binds to cholesterol components of the SGM and targets CgA to SGs in pituitary and pancreatic endocrine cells.  相似文献   

2.
The expression of secretogranin III (SgIII) in chicken endocrine cells has not been investigated. There is limited data available for the immunohistochemical localization of SgIII in the brain, pituitary, and pancreatic islets of humans and rodents. In the present study, we used immunoblotting to reveal the similarities between the expression patterns of SgIII in the common endocrine glands of chickens and rats. The protein–protein interactions between SgIII and chromogranin A (CgA) mediate the sorting of CgA/prohormone core aggregates to the secretory granule membrane. We examined these interactions using co-immunoprecipitation in chicken endocrine tissues. Using immunohistochemistry, we also examined the expression of SgIII in a wide range of chicken endocrine glands and gastrointestinal endocrine cells (GECs). SgIII was expressed in the pituitary, pineal, adrenal (medullary parts), parathyroid, and ultimobranchial glands, but not in the thyroid gland. It was also expressed in GECs of the stomach (proventriculus and gizzard), small and large intestines, and pancreatic islet cells. These SgIII-expressing cells co-expressed serotonin, somatostatin, gastric inhibitory polypeptide, glucagon-like peptide-1, glucagon, or insulin. These results suggest that SgIII is expressed in the endocrine cells that secrete peptide hormones, which mature via the intragranular enzymatic processing of prohormones and physiologically active amines in chickens.  相似文献   

3.
Mast cells are granular immunocytes that reside in the body's barrier tissues. These cells orchestrate inflammatory responses. Proinflammatory mediators are stored in granular structures within the mast cell cytosol. Control of mast cell granule exocytosis is a major therapeutic goal for allergic and inflammatory diseases. However, the proteins that control granule biogenesis and abundance in mast cells have not been elucidated. In neuroendocrine cells, whose dense core granules are strikingly similar to mast cell granules, granin proteins regulate granulogenesis. Our studies suggest that the Secretogranin III (SgIII) protein is involved in secretory granule biogenesis in mast cells. SgIII is abundant in mast cells, and is organized into vesicular structures. Our results show that over-expression of SgIII in mast cells is sufficient to cause an expansion of a granular compartment in these cells. These novel granules store inflammatory mediators that are released in response to physiological stimuli, indicating that they function as bona fide secretory vesicles. In mast cells, as in neuroendocrine cells, we show that SgIII is complexed with Chromogranin A (CgA). CgA is granulogenic when complexed with SgIII. Our data show that a novel non-granulogenic truncation mutant of SgIII (1-210) lacks the ability to interact with CgA. Thus, in mast cells, a CgA-SgIII complex may play a key role in secretory granule biogenesis. SgIII function in mast cells is unlikely to be limited to its partnership with CgA, as our interaction trap analysis suggests that SgIII has multiple binding partners, including the mast cell ion channel TRPA1.  相似文献   

4.
Secretogranin III (SgIII) is one of the acidic secretory proteins, designated as granins, which are specifically expressed in neuronal and endocrine cells. To clarify its precise distribution in the anterior lobe of the rat pituitary gland, we raised a polyclonal antiserum against rat SgIII for immunocytochemical analyses. By immunohistochemistry using semithin sections, positive signals for SgIII were detected intensely in mammotropes and thyrotropes, moderately in gonadotropes and corticotropes, but not in somatotropes. The distribution pattern of SgIII in the pituitary gland was similar to that of chromogranin B (CgB), also of the granin protein family, suggesting that the expressions of these two granins are regulated by common mechanisms. The localization of SgIII in endocrine cells was confirmed by immunoelectron microscopy. In particular, secretory granules of mammotropes and thyrotropes were densely and preferentially co-labeled for SgIII and CgB in their periphery. Moreover, positive signals for SgIII were occasionally found in cells containing both prolactin and TSH in secretory granules. These lines of evidence suggest that SgIII and CgB are closely associated with the secretory granule membrane and that this membrane association might contribute to gathering and anchoring of other soluble constituents to the secretory granule membrane.  相似文献   

5.
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.  相似文献   

6.
Vacuolar H+-ATPases (V-ATPases) are multisubunit enzymes that acidify various intracellular organelles, including secretory pathway compartments. We have examined the effects of the specific V-ATPase inhibitor bafilomycin A1 (Baf) on the intracellular transport, sorting, processing and release of a number of neuroendocrine secretory proteins in primary Xenopus intermediate pituitary cells. Ultrastructural examination of Baf-treated intermediate pituitary cells revealed a reduction in the amount of small dense-core secretory granules and the appearance of vacuolar structures in the trans-Golgi area. Pulse-chase incubations in combination with immunoprecipitation analysis showed that in treated cells, the proteolytic processing of the newly synthesized prohormone proopiomelanocortin, prohormone convertase PC2 and secretogranin III (SgIII) was inhibited, and an intracellular accumulation of intact precursor forms and intermediate cleavage products became apparent. Moreover, we found that treated cells secreted considerable amounts of a PC2 processing intermediate and unprocessed SgIII in a constitutive fashion. Collectively, these data indicate that in the secretory pathway, V-ATPases play an important role in creating the microenvironment that is essential for proper transport, sorting, processing and release of regulated secretory proteins.  相似文献   

7.
Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans‐Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol‐rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT‐20 cells transfected with small interfering RNA targeting SgIII. In the SgIII‐knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA‐containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII‐knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol‐dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.  相似文献   

8.
Prohormone convertases PC1 and PC2 are endoproteases involved in prohormone cleavage at pairs of basic amino acids. There is a report that prohormone convertase exists in the rat anterior pituitary gonadotrophs, where it had previously been considered that proprotein processing does not take place. In addition to luteinizing hormone and follicle-stimulating hormone, rat pituitary gonadotrophs contain chromogranin A (CgA) and secretogranin II (SgII), two members of the family of granin proteins, which have proteolytic sites in their molecules. In the present study we examined whether there is a close correlation between subcellular localization of prohormone convertases and granin proteins. Ultrathin sections of rat anterior pituitary were immunolabeled with anti-PC1 or -PC2 antisera and then stained with immunogold. Immunogold particles for PC1 were exclusively found in large, lucent secretory granules, whereas those for PC2 were seen in both large, lucent and small, dense granules. The double-immunolabeling also demonstrated colocalization of PC2 and SgII in small, dense granules and of PC1, PC2, and CgA in large, lucent granules. These immunocytochemical results suggest that PC2 may be involved in the proteolytic processing of SgII and that both PC1 and PC2 may be necessary to process CgA.  相似文献   

9.
INTRODUCTION: Chromogranin (Cg) and secretogranin (Sg) are members of the granin family of proteins, which are expressed in neuroendocrine and nervous tissue. In recent publications we have presented generation of region-specific antibodies against CgA and CgB and also development of several region-specific radioimmunoassays for measurements of specific parts of the Cgs. In this study we describe generation of antibodies against SgII, SgIII, SgV and the proconvertases PC1/3 and PC2 and development of radioimmunoassays for measurements of these proteins. MATERIALS AND METHODS: Peptides homologous to defined parts of the secretogranin and proconvertase molecules were selected and synthesised. Antibodies were raised, radioimmunoassays were developed and circulating levels of the proteins in plasma samples from 22 patients with neuroendocrine tumours were measured in the assays. RESULTS: Increased plasma concentrations were recorded in 11, 4 and 3 of the patients with the SgII 154-165 (N-terminal secretoneurin), the SgII 172-186 (C-terminal Secretoneurin) and the SgII 225-242 assays respectively. The SgIII, SgV, PC1/3 and PC2 assays failed to detect increased concentrations in any of the patients. CONCLUSION: Increased concentrations of SgII, especially the N-terminal part of secretoneurin could be measured in plasma from patients with endocrine pancreatic tumours and in this case this assay was quite comparable to measurements of CgA and CgB. Even though secretoneurin was not as frequently increased as CgA and CgB in patients with carcinoid tumours or pheochromocytoma it may be a useful marker for endocrine pancreatic tumours.  相似文献   

10.
Rab proteins comprise a complex family of small GTPases involved in the regulation of intracellular membrane trafficking and reorganization. In this study, we identified Rab18 as a new inhibitory player of the secretory pathway in neuroendocrine cells. In adrenal chromaffin PC12 cells and pituitary AtT20 cells, Rab18 is located at the cytosol but associates with a subpopulation of secretory granules after stimulation of the regulated secretory pathway, strongly suggesting that induction of secretion provokes Rab18 activation and recruitment to these organelles. In support of this, a dominant-inactive Rab18 mutant was found to distribute diffusely in the cytosol, whereas a dominant-active Rab18 mutant was predominantly associated to secretory granules. Furthermore, interaction of Rab18 with secretory granules was associated to an inhibition in the secretory activity of PC12 and AtT20 cells in response to stimulatory challenges. Association of Rab18 with secretory granules was also observed by immunoelectron microscopy in normal, non-tumoral endocrine cells (pituitary melanotropes), wherein Rab18 protein content is inversely correlated to the level of secretory activity of cells. Taken together, these findings suggest that, in neuroendocrine cells, Rab18 acts as a negative regulator of secretory activity, likely by impairing secretory granule transport.  相似文献   

11.
Summary Chromogranins (Cg)/secretogranins (Sg) are representative acidic glycoproteins in secretory granules of many endocrine cells where they are co-stored and co-released with resident amines or peptides. The exact distribution of these proteins in the rat anterior pituitary is unknown. Therefore, pituitaries from untreated male rats were investigated by light- and electron-microscopical immunocytochemistry for the cellular and subcellular localization of CgA, CgB, and SgII. Endocrine cells, identified light-microscopically as gonadotrophs in adjacent semithin sections immunostained for follicle-stimulating hormone (FSH) and luteinizing hormone (LH), concomitantly were immunoreactive for CgA, CgB, and SgII. Ultrastructurally, gonadotrophs exhibited two types of secretory granules which varied in their immunoreactivities for gonadotropins and Cg/Sg. Large-sized (500 nm), moderately electron-dense granules showed antigenicities for FSH, LH, and CgA. Smaller-sized (200 nm), electron-dense granules were immunoreactive exclusively for LH and SgII. The distinct localization of CgA and SgII to morphologically and hormonally different secretory granules indicates the existence of two regulated secretory pathways in rat pituitary gonadotrophs. Hence, these proteins are considered as valuable tools to analyze the intracellular trafficking during granule biogenesis and the possible different regulation of FSH and LH secretion.  相似文献   

12.
Chromogranins (Cg)/secretogranins (Sg) are representative acidic glycoproteins in secretory granules of many endocrine cells where they are co-stored and co-released with resident amines or peptides. The exact distribution of these proteins in the rat anterior pituitary is unknown. Therefore, pituitaries from untreated male rats were investigated by light- and electron-microscopical immunocytochemistry for the cellular and subcellular localization of CgA, CgB, and SgII. Endocrine cells, identified light-microscopically as gonadotrophs in adjacent semithin sections immunostained for follicle-stimulating hormone (FSH) and luteinizing hormone (LH), concomitantly were immunoreactive for CgA, CgB, and SgII. Ultrastructurally, gonadotrophs exhibited two types of secretory granules which varied in their immunoreactivities for gonadotropins and Cg/Sg. Large-sized (500 nm), moderately electron-dense granules showed antigenicities for FSH, LH, and CgA. Smaller-sized (200 nm), electron-dense granules were immunoreactive exclusively for LH and SgII. The distinct localization of CgA and SgII to morphologically and hormonally different secretory granules indicates the existence of two regulated secretory pathways in rat pituitary gonadotrophs. Hence, these proteins are considered as valuable tools to analyze the intracellular trafficking during granule biogenesis and the possible different regulation of FSH and LH secretion.  相似文献   

13.
Chromogranin A (CgA), originally identified in adrenal chromaffin cells, is a member of the granin family of acidic secretory glycoproteins that are expressed in endocrine cells and neurons. CgA has been proposed to play multiple roles in the secretory process. Intracellularly, CgA may control secretory granule biogenesis and target neurotransmitters and peptide hormones to granules of the regulated pathway. Extracellularly, peptides formed as a result of proteolytic processing of CgA may regulate hormone secretion. To investigate the role of CgA in the whole animal, we created a mouse mutant null for the Chga gene. These mice are viable and fertile and have no obvious developmental abnormalities, and their neural and endocrine functions are not grossly impaired. Their adrenal glands were structurally unremarkable, and morphometric analyses of chromaffin cells showed vesicle size and number to be normal. However, the excretion of epinephrine, norepinephrine, and dopamine was significantly elevated in the Chga null mutants. Adrenal medullary mRNA and protein levels of other dense-core secretory granule proteins including chromogranin B, and secretogranins II to VI were up-regulated 2- to 3-fold in the Chga null mutant mice. Hence, the increased expression of the other granin family members is likely to compensate for the Chga deficiency.  相似文献   

14.
Chromogranin A (CgA) may be critical for secretory granule biogenesis in sympathoadrenal cells. We found that silencing the expression of CgA reduced the number of secretory granules in normal sympathoadrenal cells (PC12), and we therefore questioned whether a discrete domain of CgA might promote the formation of a regulated secretory pathway in variant sympathoadrenal cells (A35C) devoid of such a phenotype. The secretory granule-forming activity of a series of human CgA domains labeled with a hemagglutinin epitope, green fluorescent protein, or embryonic alkaline phosphatase was assessed in A35C cells by deconvolution and electron microscopy and by secretagogue-stimulated release assays. Expression of CgA in A35C cells induced the formation of vesicular organelles throughout the cytoplasm, whereas two constitutive secretory pathway markers accumulated in the Golgi complex. The lysosome-associated membrane protein LGP110 did not co-localize with CgA, consistent with non-lysosomal targeting of the granin in A35C cells. Thus, CgA-expressing A35C cells showed electron-dense granules approximately 180-220 nm in diameter, and secretagogue-stimulated exocytosis of CgA from A35C cells suggested that expression of the granin may be sufficient to restore a regulated secretory pathway and thereby rescue the sorting of other secretory proteins. We show that the formation of vesicular structures destined for regulated exocytosis may be mediated by a determinant located within the CgA N-terminal region (CgA-(1-115), with a necessary contribution of CgA-(40-115)), but not the C-terminal region (CgA-(233-439)) of the protein. We propose that CgA promotes the biogenesis of secretory granules by a mechanism involving a granulogenic determinant located within CgA-(40-115) of the mature protein.  相似文献   

15.
V Colomer  K Lal  T C Hoops    M J Rindler 《The EMBO journal》1994,13(16):3711-3719
The mechanisms for segregation of secretory and membrane proteins incorporated into storage granules from those transported constitutively have been thought to be conserved in diverse cell types, including exocrine and endocrine cells. However, GP2, the major protein of pancreatic zymogen granule membranes, in its native glycosyl phosphatidylinositol (GPI)-linked form, is incorporated into secretory granules when expressed in exocrine pancreatic AR42J cells, but not in the endocrine cells such as pituitary AtT20. To determine whether the protein moiety of GP2 contains the cell-type specific information for packaging into granules, a secretory form of GP2 (GP2-GPI-), with the GPI attachment site deleted, was generated and introduced into AR42J and AtT20 cells. Like native GP2, GP2-GPI- localized to the zymogen-like granules of AR42J cells and underwent regulated secretion. In AtT20 cells expressing GP2-GPI-, however, the protein was secreted by the constitutive pathway. Thus, a granule packaging signal is present in the luminal portion of GP2 that is functional only in the exocrine cells. However, this cell-type dependent sorting process is not limited to GP2 or membrane proteins. Amylase, a major content protein of pancreatic acinar and serous salivary gland granules, was also secreted exclusively by the constitutive pathway when expressed in AtT20 cells. The cell-type specific targeting of GP2 to granules correlated with its behavior in an in vitro aggregation assay where it co-aggregated more effectively with content proteins from pancreatic zymogen granules than with those from pituitary granules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Chromogranin A (CgA) is a neuroendocrine protein that undergoes proteolytic cleavage in secretory granules. The aim of the present study was to characterize the peptides WE14 and EL35 that are derived from evolutionarily conserved regions of CgA in rat and human endocrine tissues. In the rat pituitary, HPLC analysis revealed that WE14 is present as a single immunoreactive peak, whereas EL35 elutes in two molecular forms. Authentic WE14 is also produced in both rat and human adrenal glands, while EL35 displays a variable elution profile depending on the tissue extract, indicating the existence of different forms of EL35 in these tissues. Immunohistochemical labeling of the rat pituitary showed that WE14 and EL35 occur in gonadotropes and melanotropes, but not in corticotropes. A strong immunoreaction for both peptides was also observed in rat adrenochromaffin cells. In the human adrenal gland, the WE14 and EL35 antisera revealed intense labeling of adrenomedullary cells in adult and nests of chromaffin progenitor cells in fetal adrenal. Finally, WE14 and EL35 immunoreactivity was detected in pheochromocytoma tissue where WE14 occurred as a single immunoreactive form, while EL35 displayed different forms. The observations that WE14 and EL35: (1). have been preserved during vertebrate evolution, (2). are processed in a cell-specific manner, and (3). occur during ontogenesis of the adrenal gland strongly suggest that these peptides play a role in endocrine tissues. In addition, the existence of differentially processed CgA-derived peptides in normal and tumorous tissues may provide new tools for the diagnosis and prognosis of neuroendocrine tumors.  相似文献   

17.
Abstract: Chromogranins and secretogranins are acidic secretory proteins of unknown function that represent major constituents of neuroendocrine secretory granules. Using a differential screening strategy designed to identify genes involved in peptide hormone biosynthesis and secretion, we have isolated cDNA clones encoding the first nonmammalian homologues of secretogranin II (SgII) and secretogranin III (SgIII) from a Xenopus intermediate pituitary cDNA library. A comparative analysis of the Xenopus and mammalian proteins revealed a striking regional conservation with an overall sequence identity of 48% for SgII and 61% for SgIII. One of the highly conserved and thus potentially functional domains in SgII corresponds to the bioactive peptide secretoneurin. However, in SgII and especially in SgIII, a substantial portion of the potential dibasic cleavage sites is not conserved, arguing against the idea that these granins serve solely as peptide precursors. Moreover, SgIII contains a conserved and repeated motif (DSTK) that is reminiscent of a repeat present in the trans -Golgi network integral membrane proteins TGN38 and TGN41, a finding more consistent with an intracellular function for this protein. When Xenopus intermediate pituitary cells were stimulated in vivo, the mRNA levels of SgII and SgIII increased dramatically (15- and 35-fold, respectively) and in parallel with that of the prohormone proopiomelanocortin (30-fold increase). Our results indicate that the process of peptide hormone production and release in a neuroendocrine cell involves multiple members of the granin family.  相似文献   

18.
Secretogranin III (SgIII) is a granin protein involved in secretory granule formation in peptide-hormone-producing endocrine cells. In this study, we analyzed the expression of the LacZ reporter in the SgIII knockout mice produced by gene trapping (SgIII-gtKO) for the purpose of comprehensively clarifying the expression patterns of SgIII at the cell and tissue levels. In the endocrine tissues of SgIII-gtKO mice, LacZ expression was observed in the pituitary gland, adrenal medulla, and pancreatic islets, where SgIII expression has been canonically revealed. LacZ expression was extensively observed in brain regions, especially in the cerebral cortex, hippocampus, hypothalamic nuclei, cerebellum, and spinal cord. In peripheral nervous tissues, LacZ expression was observed in the retina, optic nerve, and trigeminal ganglion. LacZ expression was particularly prominent in astrocytes, in addition to neurons and ependymal cells. In the cerebellum, at least four cell types expressed SgIII under basal conditions. The expression of SgIII in the glioma cell lines C6 and RGC-6 was enhanced by excitatory glutamate treatment. It also became clear that the expression level of SgIII varied among neuron and astrocyte subtypes. These results suggest that SgIII is involved in glial cell function, in addition to neuroendocrine functions, in the nervous system:  相似文献   

19.
This short review deals with our investigations in neuroendocrine tumors (NETs) with antibodies against defined epitopes of chromogranins (Cgs) A and B and secretogranins (Sgs) II and III. The immunohistochemical expression of different epitopes of the granin family of proteins varies in NE cells in normal human endocrine and non-endocrine organs and in NETs, suggesting post-translational processing. In most NETs one or more epitopes of the granins were lacking, but variations in the expression pattern occurred both in benign and malignant NETs. A few epitopes displayed patterns that may be valuable in differentiating between benign and malignant NET types, e.g., well-differentiated NET types expressed more CgA epitopes than the poorly differentiated ones and C-terminal secretoneurin visualized a cell type related to malignancy in pheochromocytomas. Plasma concentrations of different epitopes of CgA and CgB varied. In patients suffering from carcinoid tumors or endocrine pancreatic tumors the highest concentrations were found with epitopes from the mid-portion of CgA. For CgB the highest plasma concentrations were recorded for the epitope 439–451. Measurements of SgII showed that patients with endocrine pancreatic tumors had higher concentrations than patients with carcinoid tumors or pheochromocytomas. SgIII was not detectable in patients with NETs.  相似文献   

20.
Granin-family proteins, including chromogranin A and secretogranin III, are sorted to the secretory granules in neuroendocrine cells. We previously demonstrated that secretogranin III binds chromogranin A and targets it to the secretory granules in pituitary corticotrope-derived AtT-20 cells. However, secretogranin III has not been identified in adrenal chromaffin and PC12 cells, where chromogranin A is correctly sorted to the secretory granules. In this study, low levels of a large and noncleaved secretogranin III have been identified in PC12 cells and rat adrenal glands. Although the secretogranin III expression was limited in PC12 cells, when the FLAG-tagged secretogranin III lacking the secretory granule membrane-binding domain was expressed excessively, hemagglutinin-tagged chromogranin A was unable to target to the secretory granules at the tips and shifted to the constitutive secretory pathway. Secretogranin III was able to bind the aggregated form of chromogranin A, suggesting that a small quantity of secretogranin III is enough to carry a large quantity of chromogranin A. Furthermore, secretogranin III bound adrenomedullin, a major peptide hormone in chromaffin cells. Indeed, small interfering RNA-directed secretogranin III depletion impaired intracellular retention of chromogranin A and adrenomedullin, suggesting that they are constitutively released to the medium. We suggest that the sorting function of secretogranin III for chromogranin A is common in PC12 and chromaffin cells as well as in other endocrine cells, and a small amount of secretogranin III is able to sort chromogranin A aggregates together with adrenomedullin to secretory granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号