首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
Activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is known to protect tumor cells from apoptosis and more specifically from the Fas-mediated apoptotic signal. The antitumoral agent edelfosine sensitizes leukemic cells to death by inducing the redistribution of the apoptotic receptor Fas into plasma membrane subdomains called lipid rafts. Herein, we show that inhibition of the PI3K signal by edelfosine triggers a Fas-mediated apoptotic signal independently of the Fas/FasL interaction. Furthermore, similarly to edelfosine, blockade of the PI3K activity, using specific inhibitors LY294002 and wortmannin, leads to the clustering of Fas whose supramolecular complex is colocalized within the lipid rafts. These findings indicate that the antitumoral agent edelfosine down-modulates the PI3K signal to sensitize tumor cells to death through the redistribution of Fas into large platform of membrane rafts.  相似文献   

3.
4.
Fas-mediated apoptosis plays an important role in normal tissue homeostasis, and disruption of this death pathway contributes to many human diseases. Induction of apoptosis via Fas activation has been associated with reactive oxygen species (ROS) generation and down-regulation of FLICE inhibitory protein (FLIP); however, the relationship between these two events and their role in Fas-mediated apoptosis are unclear. We show herein that ROS are required for FLIP down-regulation and apoptosis induction by Fas ligand (FasL) in primary lung epithelial cells. ROS mediate the down-regulation of FLIP by ubiquitination and subsequent degradation by proteasome. Inhibition of ROS by antioxidants or by ectopic expression of ROS-scavenging enzymes glutathione peroxidase and superoxide dismutase effectively inhibited FLIP down-regulation and apoptosis induction by FasL. Hydrogen peroxide is a primary oxidative species responsible for FLIP down-regulation, whereas superoxide serves as a source of peroxide and a scavenger of NO, which positively regulates FLIP via S-nitrosylation. NADPH oxidase is a key source of ROS generation induced by FasL, and its inhibition by dominant-negative Rac1 expression or by chemical inhibitor decreased the cell death response to FasL. Taken together, our results indicate a novel pathway of FLIP regulation by an interactive network of reactive oxygen and nitrogen species that provides a key mechanism of apoptosis regulation in Fas-induced cell death and related apoptosis disorders.  相似文献   

5.
6.
Tocotrienols, a subclass in the vitamin E family of compounds, have been shown to induce apoptosis by activating caspase-8 and caspase-3 in neoplastic mammary epithelial cells. Since caspase-8 activation is associated with death receptor apoptotic signaling, studies were conducted to determine the exact death receptor/ligand involved in tocotrienol-induced apoptosis. Highly malignant +SA mouse mammary epithelial cells were grown in culture and maintained in serum-free media. Treatment with 20 microM gamma-tocotrienol decreased+SA cell viability by inducing apoptosis, as determined by positive terminal dUTP nick end labeling (TUNEL) immunocytochemical staining. Western blot analysis showed that gamma-tocotrienol treatment increased the levels of cleaved (active) caspase-8 and caspase-3. Combined treatment with caspase inhibitors completely blocked tocotrienol-induced apoptosis. Additional studies showed that treatment with 100 ng/ml tumor necrosis factor-alpha (TNF-alpha), 100 ng/ml FasL, 100 ng/ml TNF-related apoptosis-inducing ligand (TRAIL), or 1 microg/ml apoptosis-inducing Fas antibody failed to induce death in +SA cells, indicating that this mammary tumor cell line is resistant to death receptor-induced apoptosis. Furthermore, treatment with 20 microM gamma-tocotrienol had no effect on total, membrane, or cytosolic levels of Fas, Fas ligand (FasL), or Fas-associated via death domain (FADD) and did not induce translocation of Fas, FasL, or FADD from the cytosolic to the membrane fraction, providing additional evidence that tocotrienol-induced caspase-8 activation is not associated with death receptor apoptotic signaling. Other studies showed that treatment with 20 microM gamma-tocotrienol induced a large decrease in the relative intracellular levels of phospho-phosphatidylinositol 3-kinase (PI3K)-dependent kinase 1 (phospho-PDK-1 active), phospho-Akt (active), and phospho-glycogen synthase kinase3, as well as decreasing intracellular levels of FLICE-inhibitory protein (FLIP), an antiapoptotic protein that inhibits caspase-8 activation, in these cells. Since stimulation of the PI3K/PDK/Akt mitogenic pathway is associated with increased FLIP expression, enhanced cellular proliferation, and survival, these results indicate that tocotrienol-induced caspase-8 activation and apoptosis in malignant +SA mammary epithelial cells is associated with a suppression in PI3K/PDK-1/Akt mitogenic signaling and subsequent reduction in intracellular FLIP levels.  相似文献   

7.
Chemotherapeutic drugs that damage DNA kill tumor cells, in part, by inducing the expression of a death receptor such as Fas or its ligand, FasL. Here, we demonstrate that epidermal growth factor (EGF) stimulation of T47D breast adenocarcinoma and embryonic kidney epithelial (HEK293) cells protects these cells from Fas-induced apoptosis. EGF stimulation of epithelial cells also inhibited Fas-induced caspase activation and the proteolysis of signaling proteins downstream of the EGF receptor, Cbl and Akt/protein kinase B (Akt). EGF stimulation of Akt kinase activity blocked Fas-induced apoptosis. Expression of activated Akt in MCF-7 breast adenocarcinoma cells was sufficient to block Fas-mediated apoptosis. Inhibition of EGF-stimulated extracellular signal-regulated kinase (ERK) activity did not affect EGF protection from Fas-mediated apoptosis. The findings indicate that EGF receptor stimulation of epithelial cells has a significant survival function against death receptor-induced apoptosis mediated by Akt.  相似文献   

8.
The dual signal hypothesis of apoptosis holds that a common signal can activate both apoptotic and proliferative pathways. The fate of a cell is dependent on which of these two pathways predominates. In the MAPK family of kinases, ERK and JNK have been proposed to mediate apoptosis whereas the PI3K-stimulated kinase, Akt/PKB, has been shown to inhibit apoptosis. The object of this study was to determine the role of these kinases in a glioma model of apoptosis. We have previously shown that K252a induces apoptosis and inhibits kinase activity. In this study we confirm these results and shown that the protein tyrosine phosphatase inhibitor sodium vanadate activates ERK, JNK and Akt/PKB, but does not stimulate proliferation. Vanadate did protect T98G cells from K252a-induced apoptosis, an effect that was abolished by addition of the PI3K inhibitor wortmannin. This suggests that PI3K and Akt/PKB may be responsible for mediating vanadate's protective effect on glioma cells. We conclude that the intracellular balance between protein phosphorylation pathways is a critical determinant of both cell proliferation and cell death.  相似文献   

9.
Fas ligand (FasL) belongs to the TNF family of death ligands, and its binding to the FasR leads to activation of several downstream signaling pathways and proteins, including NF-κB and PI3K/Akt. However, it is not known whether cross-talk exists between NF-κB and PI3K/Akt in the context of FasL signaling. We demonstrate using both human renal epithelial 293T cells and Jurkat T-lymphocyte cells that although FasL activates both Akt and NF-κB, Akt inhibits FasL-dependent NF-κB activity in a reactive oxygen species-dependent manner. Cellular FLICE-inhibitory protein (c-FLIP), an antioxidant and an important component of the death-inducing signaling complex, also represses NF-κB upstream of the regulatory IκB kinase-γ protein subunit in the NF-κB signaling pathway, and positive cross-talk exists between Akt and c-FLIP in the context of inhibition of FasL-induced NF-κB activity. The presence of two death effector domains of c-FLIP and S-nitrosylation of its caspase-like domain were found to be important for mediating c-FLIP-dependent downregulation of NF-κB activity. Taken together, our study reveals a novel link between NF-κB and PI3K/Akt and establishes c-FLIP as an important regulator of FasL-mediated cell death.  相似文献   

10.
The Notch family of transmembrane receptors have been implicated in a variety of cellular decisions in different cell types. Here we investigate the mechanism underlying Notch-1-mediated anti-apoptotic function in T cells using model cell lines as the experimental system. Ectopic expression of the intracellular domain of Notch-1/activated Notch (AcN1) increases expression of anti-apoptotic proteins of the inhibitors of apoptosis (IAP) family, the Bcl-2 family, and the FLICE-like inhibitor protein (FLIP) and inhibits death triggered by multiple stimuli that activate intrinsic or extrinsic pathways of apoptosis in human and murine T cell lines. Numb inhibited the AcN1-dependent induction of anti-apoptotic proteins and anti-apoptotic function. Using pharmacological inhibitors and dominant-negative approaches, we describe a functional role for phosphatidylinositol 3-kinase (PI3K)-dependent activation of the serine-threonine kinase Akt/PKB in the regulation of AcN1-mediated anti-apoptotic function and the expression of FLIP and IAP family proteins. Using a cell line deficient for the T cell-specific, Src family protein, the tyrosine kinase p56(lck) and by reconstitution approaches we demonstrate that p56(lck) is required for the Notch-1-mediated activation of Akt/PKB function. Furthermore, the Src tyrosine kinase inhibitor, PP2, abrogated ectopically expressed AcN1-mediated anti-apoptotic function and phosphorylation of p56(lck). We present evidence that endogenous Notch-1 associates with p56(lck) and PI3K but that Akt/PKB does not co-immunoprecipitate with the Notch1.p56(lck).PI3K complex. Finally, we demonstrate that the Notch1.p56(lck).PI3K complex is present in primary T cells that have been activated in vitro and sustained in culture with the cytokine interleukin-2.  相似文献   

11.
12.
The role of signaling pathways including the mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K) during viral infection has gained much recent attention. Our laboratory reported on an important regulatory role for extracellular signal-regulated kinases (ERK1/2), subfamily members of the MAPKs, during coxsackievirus B3 (CVB3) infection. However, the role of the PI3K pathway in CVB3 infection has not been well characterized. CVB3 is the most common known viral infectant of heart muscle that directly injures and kills infected cardiac myocytes during the myocarditic process. In the present study, we investigated the role of protein kinase B (PKB) (also known as Akt), a general downstream mediator of survival signals through the PI3K cascade, in regulating CVB3 replication and virus-induced apoptosis in a well-established HeLa cell model. We have demonstrated that CVB3 infection leads to phosphorylation of PKB/Akt on both Ser-473 and Thr-308 residues through a PI3K-dependent mechanism. Transfection of HeLa cells with a dominant negative mutant of Akt1 or pretreatment of wild-type HeLa cells with the specific PI3K inhibitor LY294002 significantly suppresses viral RNA expression, as reflected in diminished viral capsid protein expression and viral release. Dominant negative Akt1 and LY294002 also increase apoptosis in infected cells, which can be reversed by addition of the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk). Interestingly, blocking of apoptosis by zVAD.fmk does not reverse the viral RNA translation blockade, indicating that the inhibitory effect of dominant negative Akt1 on viral protein expression is not caspase dependent. In addition, we showed that the attachment of virus to its receptor-coreceptor complex is not sufficient for PKB/Akt activation and that postentry viral replication is required for Akt phosphorylation. Taken together, these data illustrate a new and imperative role for Akt in CVB3 infection in HeLa cells and show that the PI3K/Akt signaling is beneficial to CVB3 replication.  相似文献   

13.
14.
Nanbo A  Yoshiyama H  Takada K 《Journal of virology》2005,79(19):12280-12285
Our recent findings demonstrated that the Epstein-Barr virus-encoding small nonpolyadenylated RNA (EBER) confers resistance to various apoptotic stimuli and contributes to the maintenance of malignant phenotypes in Burkitt's lymphoma. In this study we investigated the role of EBER in the human epithelial Intestine 407 cell line, which is known to be susceptible to Fas (Apo1/CD95)-mediated apoptosis. Fas, a member of the tumor necrosis factor receptor family, transduces extracellular signals to the apoptotic cellular machinery, leading to cell death. Transfection of the EBER gene into Intestine 407 cells significantly protected the cells from Fas-mediated apoptosis, whereas EBER-negative cell lines underwent apoptosis after Fas treatment. EBER bound double-stranded RNA-dependent protein kinase R (PKR), an interferon-inducible serine/threonine kinase, and abrogated its kinase activity. Moreover, expression of the catalytically inactive dominant-negative PKR provided resistance to Fas-induced apoptosis. Expression of EBER or dominant-negative PKR also inhibited the cleavage of poly(ADP-ribose) polymerase, a mediator of the cellular response to DNA damage, downstream of the Fas-mediated apoptotic pathway. These results in combination indicate that EBER confers resistance to Fas-mediated apoptosis by blocking PKR activity in Intestine 407 cells, consistent with the idea that EBER contributes to the maintenance of epithelioid malignancies.  相似文献   

15.
Kit and its ligand stem cell factor (SCF) play a fundamental role in hematopoiesis, melanogenesis and gametogenesis. Homozygous W(v) mutant mice with a mutation in kit show abnormalities in these cell lineages. Fas is a member of the death receptor family inducing apoptosis. In this study, we generated double-mutant mice (W(v)/W(v):Fas(-/-)) and analyzed histologically their reproductive organs. In testes and ovaries of the double-mutant mice, testicular germ cells and oocytes were detected, respectively, whereas the same-aged W(v)/W(v) mice contained neither cells. In addition, inhibition of Kit signals by administration of anti-Kit mAb, which induces degeneration of testicular germ cells in vivo in wild-type mice, did not cause degeneration in Fas-deficient mice. In testicular germ cells of W(v)/W(v) mutant mice, an increase of Fas expression was observed in spermatogonia. Further, in vitro treatment with SCF was shown to downregulate Fas on fibroblasts expressing exogenous Kit through activation of PI3-kinase/Akt. All the results clearly indicate that Fas-mediated apoptosis is involved in germ cell degeneration accompanied by defects in Kit-mediated signals, and Kit signaling negatively regulates Fas-mediated apoptosis in vivo.  相似文献   

16.
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.  相似文献   

17.
Fas/Fas ligand system triggers apoptosis in many cell types. Bcl-XL overexpresion antagonizes Fas/Fas ligand-mediated cell death. The mechanism by which Bcl-XL influences Fas-mediated cell death is unclear. We have found that microtubule-damaging drugs (e.g. Paclitaxel) induce apoptosis in a Fas/FasL-dependent manner. Inhibition of Fas/FasL pathway by anti-FasL antibody, mutant Fas or a dominant negative FADD blocks paclitaxel-induced apoptosis. Paclitaxel induced apoptosis through activation of both caspase-8 and caspase-3. Overexpression of Bcl-XL leads to inhibition of paclitaxel-induced FasL expression and apoptosis. Bcl-XL prevents the nuclear translocation of NFAT (nuclear factor of activated T lymphocytes) by inhibiting the activation of calcineurin, a calcium-dependent phosphatase that must dephosphorylate NFAT for it to move to the nucleus. The loop domain in Bcl-XL can suppress the anti-apoptotic function of Bcl-XL and may be a target for regulatory post-translational modifications. Upon phosphorylation, Bcl-XL loses its ability to bind with calcineurin. Without NFAT nuclear translocation, the FasL gene is not transcribed. Thus, paclitaxel and other drugs that disturb microtubule function kill cells, at least in part, through the induction of FasL, and Bcl-XL-mediated resistance to these agents is related to failure to induce FasL expression.  相似文献   

18.
Tumor growth is the result of deregulated tissue homeostasis which is maintained through the delicate balance of cell growth and apoptosis. One of the most efficient inducers of apoptosis is the death receptor Fas. We report here that oncogenic Ras (H-Ras) downregulates Fas expression and renders cells of fibroblastic and epitheloid origin resistant to Fas ligand-induced apoptosis. In Ras-transformed cells, Fas mRNA is absent. Inhibition of DNA methylation restores Fas expression. H-Ras signals via the PI 3-kinase pathway to downregulate Fas, suggesting that the known anti-apoptotic effect of the downstream PKB/Akt kinase may be mediated, at least in part, by the repression of Fas expression. Thus, the oncogenic potential of H-ras may reside on its capacity not only to promote cellular proliferation, but also to simultaneously inhibit Fas-triggered apoptosis.  相似文献   

19.
Lewis lung carcinoma (3LL) cells were constitutively resistant to Fas-mediated apoptosis, but overexpression of Fas on 3LL cells allowed Fas-mediated apoptosis after crosslinking with agonist anti-Fas antibody (Jo2) in vitro. Surprisingly, Fas-overexpressing 3LL cells showed enhanced in vivo tumor progression, whereas no promotion of in vivo tumor growth was observed for dominant negative (DN) Fas-overexpressing 3LL transfectants in which the cytoplasmic death domain was deleted. In addition, the promotion of in vivo tumor growth by Fas-overexpression was reduced in gld (FasL-mutation) mice compared to normal mice. These data indicate that intact Fas/FasL cell signaling is required for the promotion of in vivo tumor growth by Fas overexpression in 3LL cells. In contrast to the efficient Fas-mediated killing induced in vitro by crosslinking with anti-Fas antibody, Fas-overexpressing 3LL cells were resistant in vitro to Fas-mediated apoptosis by activated T cells or transient FasL transfection. These data suggest that agonist anti-Fas antibody and natural FasL can transmit qualitatively different signals, and crosslinking of Fas with natural FasL on 3LL cells does not deliver the expected death signal. Thus, our results demonstrate that in some cases overexpression of Fas can result in a survival advantage for tumor cells in vivo.  相似文献   

20.
Programmed cell death (apoptosis) can be found in normal thyroid tissue and in various diseases affecting the thyroid gland. The Fas/Fas ligand (FasL) system is involved in the induction of apoptosis in human thyrocytes. Cross-linking the Fas receptor with its own ligand or with an antibody capable of oligomerizing with the receptor induces programmed cell death. We investigated the role of Fas-induced apoptosis in primary human thyrocytes in vitro. Cell cultures of normal human thyrocytes were prepared from specimens obtained during surgery for uninodular goiter. Apoptosis was induced by incubation of the cells with a monoclonal IgM anti-Fas antibody. The presence of apoptosis was determined by FACS analysis of FITC-labelled annexin V binding combined with dye exclusion of propidium iodide. We found a significant rate of Fas-induced apoptosis in normal thyrocytes after activation with a monoclonal anti-Fas antibody. TSH was able to inhibit Fas-mediated apoptosis in a dose-dependent manner. This effect was more pronounced when thyrocytes were incubated in the presence of interferon-gamma. Low concentrations of iodine were able to inhibit apoptosis, while high concentrations of iodine increased the rate of Fas-induced apoptosis. Our results show that Fas-mediated apoptosis is inducible in normal human thyrocytes in vitro and is influenced by TSH and iodine. The Fas/FasL system may play an important role in the regulation of cell number within the thyroid gland, and may be involved in the processes leading to goiter in iodine deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号