首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Profiling of sesquiterpene hydrocarbons in extracts of goldenrod, Solidago canadensis, by GC-MS revealed the presence of both enantiomers of germacrene D and lesser amounts of germacrene A, alpha-humulene, and beta-caryophyllene. A similarity-based cloning strategy using degenerate oligonucleotide primers, based on conserved amino acid sequences in known plant sesquiterpene synthases and RT-PCR, resulted in the isolation of a full length sesquiterpene synthase cDNA. Functional expression of the cDNA in E. coli, as an N-terminal thioredoxin fusion protein using the pET32b vector yielded an enzyme that was readily purified by nickel-chelate affinity chromatography. Chiral GC-MS analysis of products from of (3)H- and (2)H-labelled farnesyl diphosphate identified the enzyme as (+)-(10R)-germacrene A synthase. Sequence analysis and molecular modelling was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco.  相似文献   

2.
3.
The naturally occurring, volatile sesquiterpene hydrocarbon germacrene D has strong effects on insect behaviour and genes encoding enzymes that produce this compound are of interest in the study of plant-insect interactions and in a number of biotechnological approaches to pest control. Goldenrod, Solidago canadensis, is unusual in that it produces both enantiomers of germacrene D. Two new sesquiterpene synthase cDNAs, designated Sc11 and Sc19, have been isolated from goldenrod and functional expression in Escherichia coli identified Sc11 as (+)-germacrene D synthase and Sc19 as (-)-germacrene D synthase. Thus, the enantiomers of germacrene D are the products of separate, but closely related (85% amino-acid identity), enzymes. Unlike other sesquiterpene synthases and the related monoterpene synthases and prenyl transferases, which contain the characteristic amino-acid motif DDXX(D,E), Sc11 is unusual in that this motif occurs as (303)NDTYD. Mutagenesis of this motif to (303)DDTYD gave rise to an enzyme that fully retained (+)-germacrene D synthase activity. The converse mutation in Sc19 (D303N) resulted in a less efficient but functional enzyme. Mutagenesis of position 303 to glutamate in both enzymes resulted in loss of activity. These results indicate that the magnesium ion-binding role of the first aspartate in the DDXXD motif may not be as critical as previously thought. Further amino-acid sequence comparisons and molecular modelling of the enzyme structures revealed that very subtle changes to the active site of this family of enzymes are required to alter the reaction pathway to form, in this case, different enantiomers from the same enzyme-bound carbocationic intermediate.  相似文献   

4.
Chicory (Cichorium intybus) sesquiterpene lactones were recently shown to be derived from a common sesquiterpene intermediate, (+)-germacrene A. Germacrene A is of interest because of its key role in sesquiterpene lactone biosynthesis and because it is an enzyme-bound intermediate in the biosynthesis of a number of phytoalexins. Using polymerase chain reaction with degenerate primers, we have isolated two sesquiterpene synthases from chicory that exhibited 72% amino acid identity. Heterologous expression of the genes in Escherichia coli has shown that they both catalyze exclusively the formation of (+)-germacrene A, making this the first report, to our knowledge, on the isolation of (+)-germacrene A synthase (GAS)-encoding genes. Northern analysis demonstrated that both genes were expressed in all chicory tissues tested albeit at varying levels. Protein isolation and partial purification from chicory heads demonstrated the presence of two GAS proteins. On MonoQ, these proteins co-eluted with the two heterologously produced proteins. The K(m) value, pH optimum, and MonoQ elution volume of one of the proteins produced in E. coli were similar to the values reported for the GAS protein that was recently purified from chicory roots. Finally, the two deduced amino acid sequences were modeled, and the resulting protein models were compared with the crystal structure of tobacco (Nicotiana tabacum) 5-epi-aristolochene synthase, which forms germacrene A as an enzyme-bound intermediate en route to 5-epi-aristolochene. The possible involvement of a number of amino acids in sesquiterpene synthase product specificity is discussed.  相似文献   

5.
In plants, sesquiterpenes of different structural types are biosynthesized from the isoprenoid intermediate farnesyl diphosphate. The initial reaction of the biosynthesis is catalyzed by sesquiterpene cyclases (synthases). In Artemisia annua L. (annual wormwood), a number of such sesquiterpene cyclases are active. We have isolated a cDNA clone encoding one of these, amorpha-4,11-diene synthase, a putative key enzyme of artemisinin biosynthesis. This clone contains a 1641-bp open reading frame coding for 546 amino acids (63.9 kDa), a 12-bp 5'-untranslated end, and a 427-bp 3'-untranslated sequence. The deduced amino acid sequence is 32 to 51% identical with the sequence of other known sesquiterpene cyclases from angiosperms. When expressed in Escherichia coli, the recombinant enzyme catalyzed the formation of both olefinic (97.5%) and oxygenated (2.5%) sesquiterpenes from farnesyl diphosphate. GC-MS analysis identified the olefins as (E)-beta-farnesene (0.8%), amorpha-4,11diene (91.2%), amorpha-4,7(11)-diene (3.7%), gamma-humulene (1.0%), beta-sesquiphellandrene (0.5%), and an unknown olefin (0.2%) and the oxygenated sesquiterpenes as amorpha-4-en-11-ol (0.2%) (tentatively), amorpha-4-en-7-ol (2.1%), and alpha-bisabolol (0.3%) (tentatively). Using geranyl diphosphate as substrate, amorpha-4,11-diene synthase did not produce any monoterpenes. The recombinant enzyme has a broad pH optimum between 7.5 and 9.0 and the Km values for farnesyl diphosphate, Mg2+, and Mn2+ are 0.9, 70, and 13 microM, respectively, at pH 7.5. A putative reaction mechanism for amorpha-4,11-diene synthase is suggested.  相似文献   

6.
Unusual features of a recombinant apple alpha-farnesene synthase   总被引:3,自引:0,他引:3  
A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.  相似文献   

7.
Sesquiterpene cyclases (synthases) catalyze the conversion of the isoprenoid intermediate farnesyl diphosphate to various sesquiterpene structural types. In plants, many sesquiterpenes are produced as defensive chemicals (phytoalexins) or mediators of chemical communication (i.e., pollinator attractants). A number of sesquiterpene synthases are present in Artemisia annua L. (annual wormwood). We have isolated a cDNA clone encoding one of these, epi-cedrol synthase. This clone contains a 1641-bp open reading frame coding for 547 amino acids (63.5 kDa), a 38-bp 5'-untranslated end, and a 272-bp 3'-untranslated sequence. The deduced amino acid sequence was 32 to 43% identical with the sequences of other known sesquiterpene cyclases from angiosperms. When expressed in Escherichia coli, the recombinant enzyme catalyzed the formation of both olefinic (3%) and oxygenated (97%) sesquiterpenes from farnesyl diphosphate. GC-MS analysis identified the olefins as alpha-cedrene (57% of the olefins), beta-cedrene (13%), (E)-beta-farnesene (5%), alpha-acoradiene (1%), (E)-alpha-bisabolene (8%), and three unknown olefins (16%) and the oxygenated sesquiterpenes (97% of total sesquiterpene generated, exclusive of farnesol and nerolidol) as cedrol (4%) and epi-cedrol (96%). epi-Cedrol synthase was not active with geranylgeranyl diphosphate as substrate, whereas geranyl diphosphate was converted to monoterpenes by the recombinant enzyme at a rate of about 15% of that observed with farnesyl diphosphate as substrate. The monoterpene olefin products are limonene (45%), terpinolene (42%), gamma-terpinene (8%), myrcene (5%), and alpha-terpinene (2%); a small amount of the monoterpene alcohol terpinen-4-ol is also produced. The pH optimum for the recombinant enzyme is 8.5-9.0 (with farnesyl diphosphate as substrate) and the K(m) values for farnesyl diphosphate are 0.4 and 1.3 microM at pH 7. 0 and 9.0, respectively. The K(m) for Mg(2+) is 80 microM at pH 7.0 and 9.0.  相似文献   

8.
9.
Sprouts of chicory (Cichorium intybus), a vegetable grown in the dark, have a slightly bitter taste associated with the presence of guaianolides, eudesmanolides, and germacranolides. The committed step in the biosynthesis of these compounds is catalyzed by a (+)-germacrene A synthase. Formation of the lactone ring is the postulated next step in biosynthesis of the germacrene-derived sesquiterpene lactones. The present study confirms this hypothesis by isolation of enzyme activities from chicory roots that introduce a carboxylic acid function in the germacrene A isopropenyl side chain, which is necessary for lactone ring formation. (+)-germacrene A is hydroxylated to germacra-1(10),4,11(13)-trien-12-ol by a cytochrome P450 enzyme, and is subsequently oxidized to germacra-1(10),4,11(13)-trien-12-oic acid by NADP+-dependent dehydrogenase(s). Both oxidized germacrenes were detected as their Cope-rearrangement products elema-1,3,11(13)-trien-12-ol and elema-1,3,11(13)-trien-12-oic acid, respectively. The cyclization products of germacra-1(10),4,11(13)-trien-12-ol, i.e. costol, were also observed. The (+)-germacrene A hydroxylase is inhibited by carbon monoxide (blue-light reversible), has an optimum pH at 8.0, and hydroxylates beta-elemene with a modest degree of enantioselectivity.  相似文献   

10.
A cDNA clone (GenBank Accession No. AY835398) encoding a sesquiterpene synthase, (E)-β-farnesene synthase, has been isolated from Artemisia annua L. It contains a 1746-bp open reading frame coding for 574 amino acids (66.9 kDa) with a calculated pI = 5.03. The deduced amino acid sequence is 30-50% identical with sequences of other sesquiterpene synthases from angiosperms. The recombinant enzyme, produced in Escherichia coli, catalyzed the formation of a single product, β-farnesene, from farnesyl diphosphate. The pH optimum for the recombinant enzyme is around 6.5 and the Km- and kcat-values for farnesyl diphosphate, is 2.1 μM and 9.5 × 10−3 s−1, respectively resulting in the efficiency 4.5 × 10−3 M−1 s−1. The enzyme exhibits substantial activity in the presence of Mg2+, Mn2+ or Co2+ but essentially no activity when Zn2+, Ni2+ or Cu2+ is used as cofactor. The concentration required for maximum activity are estimated to 5 mM, 0.5 mM and <10 μM for Mg2+, Co2+ or Mn2+, respectively. Geranyl diphosphate is not a substrate for the recombinant enzyme.  相似文献   

11.
12.
Using oligonucleotide primers designed to the known gene sequence of an (E)-beta-farnesene (EbetaF) synthase, two cDNA sequences (MxpSS1 and MxpSS2) were cloned from a black peppermint (Menthaxpiperita) plant. MxpSS1 encoded a protein with 96% overall amino acid sequence identity with the EbetaF synthase. Recombinant MxpSS1 produced in Escherichia coli, after removal of an N-terminal thioredoxin fusion, had a K(m) for FPP of 1.91+/-0.1 microM and k(cat) of 0.18 s(-1), and converted farnesyl diphosphate (FPP) into four products, the major two being cis-muurola-3,5-diene (45%) and cis-muurola-4(14),5-diene (43%). This is the first cis-muuroladiene synthase, to be characterised. MxpSS2 encoded a protein with only two amino acids differing from EbetaF synthase. Recombinant MxpSS2 protein showed no activity towards FPP. One of the two mutations, at position 531 (leucine in MxpSS2 and serine in EbetaF synthase) was shown, by structural modelling to occur in the J-K loop, an element of the structure of sesquiterpene synthases known to be important in the reaction mechanism. Reintroduction of the serine at position 531 into MxpSS2 by site-directed mutagenesis restored EbetaF synthase activity (K(m) for FPP 0.98+/-0.12 microM, k(cat) 0.1 s(-1)), demonstrating the crucial role of this residue in the enzyme activity. Analysis, by GC-MS, of the sesquiterpene profile of the plant used for the cloning, revealed that EbetaF was not present, confirming that this particular mint chemotype had lost EbetaF synthase activity due to the observed mutations.  相似文献   

13.
A cDNA was cloned from Ruta graveolens cells encoding a novel O-methyltransferase (OMT) with high similarity to orcinol or chavicol/eugenol OMTs, but containing a serine-rich N-terminus and a 13 amino acid insertion between motifs IV and V. Expression in Escherichia coli revealed S-adenosyl-l-methionine-dependent OMT activity with methoxylated phenols only with an apparent Km of 20.4 for the prime substrate 3,5-dimethoxyphenol. The enzyme forms a homodimer of 84 kDa, and the activity was insignificantly affected by 2.0 mM Ca2+ or Mg2+, whereas Fe2+, Co2+, Zn2+, Cu2+ or Hg2+ were inhibitory (78-100%). Dithiothreitol (DTT) suppressed the OMT activity. This effect was examined further, and, in the presence of Zn2+ as a potential thiol methyltransferase (TMT) cofactor, the recombinant OMT methylated DTT to DTT-monomethylthioether. Sets of kinetic OMT experiments with 3,5-dimethoxyphenol at various Zn2+/DTT concentrations revealed the competitive binding of DTT with an apparent Ki of 52.0 microM. Thus, the OMT exhibited TMT activity with almost equivalent affinity to the thiol pseudosubstrate which is structurally unrelated to methoxyphenols.  相似文献   

14.
A cDNA clone encoding amorpha-4,11-diene synthase from Artemisia annua was subcloned into a bacterial expression vector in frame with a His6-tag. Recombinant amorpha-4,11-diene synthase was produced in Escherichia coli and purified to apparent homogeneity. The enzyme showed pH optimum at pH 6.5, and a minimum at pH 7.5. Substantial activity was observed in the presence of Mg2+, Mn2+ or Co2+ as cofactor. The enzyme exhibits a low activity in the presence of Ni2+ and essentially no activity with Cu2+ or Zn2+. The sesquiterpenoids produced from farnesyl diphosphate in the presence of Mg2+ were analyzed by GC-MS. In addition to amorpha-4,11-diene, 15 sesquiterpenoids were produced. Only small quantitative differences in product pattern were observed at pH 6.5, 7.5, or 9.5. Amorpha-4,11-diene synthase showed significant increased product selectivity in the presence of Mn2+ or Co2+. Km for farnesyl diphosphate was 3.3, 8.0, and 0.7 microM in the presence of Mg2+, Mn2+ or Co2+, respectively. The corresponding kcat-values were 6.8, 15.0, and 1.3 x 10(-3) s(-1), respectively. Km and kcat for geranyl diphosphate were 16.9 microM and 7.0 x 10(-4) s(-1), respectively, at pH 6.5, in the presence of Mn2+.  相似文献   

15.
16.
Geranyl diphosphate synthase catalyzes the condensation of dimethylallyl diphosphate and isopentenyl diphosphate to generate geranyl diphosphate, the essential precursor of monoterpene biosynthesis. Using geranylgeranyl diphosphate synthase from Taxus canadensis as a hybridization probe, four full length cDNA clones, sharing high sequence identity to each other (>69%) and to the Taxus geranylgeranyl diphosphate synthase (>66%), were isolated from a grand fir (Abies grandis) cDNA library. When expressed in Escherichia coli, three of the recombinant enzymes produced geranyl diphosphate and one produced geranylgeranyl diphosphate as the dominant product when supplied with isopentenyl diphosphate and dimethylallyl diphosphate as cosubstrates. One enzyme (AgGPPS2) was confirmed as a specific geranyl diphosphate synthase, in that it accepted only dimethylallyl diphosphate as the allylic cosubstrate and it produced exclusively geranyl diphosphate as product, with a k(cat) of 1.8s(-1). Gel filtration experiments performed on the recombinant geranyl diphosphate synthases, in which the plastidial targeting sequences had been deleted, revealed that these enzymes are homodimers similar to other short-chain prenyltransferases but different from the heterotetrameric geranyl diphosphate synthase of mint.  相似文献   

17.
The leaves of the composite Solidago canadensis (goldenrod) were shown to contain (-)-alpha-gurjunene synthase activity. This sesquiterpene is likely to be the precursor for cyclocolorenone, a sesquiterpene ketone present in high amounts in S. canadensis leaves. (-)-alpha-Gurjunene synthase was purified to apparent homogeneity (741-fold) by anion-exchange chromatography (on several matrices), dye ligand chromatography, hydroxylapatite chromatography, and gel filtration. Chromatography on a gel filtration matrix indicated a native molecular mass of 48 kDa, and SDS-PAGE showed the enzyme to be composed of one subunit with a denatured mass of 60 kDa. Its maximum activity was observed at pH 7.8 in the presence of 10 mM Mg2+ and the KM value for the substrate farnesyl diphosphate was 5.5 microM. Over a range of purification steps (-)-alpha-gurjunene and (+)-gamma-gurjunene synthase activities copurified. In addition, the product ratio of the enzyme activity under several different assay conditions was always 91% (-)-alpha-gurjunene and 9% (+)-gamma-gurjunene. This suggests that the formation of these two structurally related products is catalyzed by one enzyme. For further confirmation, we carried out a number of mechanistic studies with (-)-alpha-gurjunene synthase, in which an enzyme preparation was incubated with deuterated substrate analogues. Based on mass spectrometry analysis of the products formed, a cyclization mechanism was postulated which makes it plausible that the synthase catalyzes the formation of both sesquiterpenes.  相似文献   

18.
After herbivore damage, many plants increase their emission of volatile compounds, with terpenes usually comprising the major group of induced volatiles. Populus trichocarpa is the first woody species with a fully sequenced genome, enabling rapid molecular approaches towards characterization of volatile terpene biosynthesis in this and other poplar species. We identified and characterized four terpene synthases (PtTPS1-4) from P. trichocarpa which form major terpene compounds of the volatile blend induced by gypsy moth (Lymantria dispar) feeding. The enzymes were heterologously expressed and assayed with potential prenyl diphosphate substrates. PtTPS1 and PtTPS2 accepted only farnesyl diphosphate and produced (−)-germacrene D and (E,E)-α-farnesene as their major products, respectively. In contrast, PtTPS3 and PtTPS4 showed both mono- and sesquiterpene synthase activity. They produce the acyclic terpene alcohols linalool and nerolidol but exhibited opposite stereospecificity. qRT-PCR analysis revealed that the expression of the respective terpene synthase genes was induced after feeding of gypsy moth caterpillars. The TPS enzyme products may play important roles in indirect defense of poplar to herbivores and in mediating intra- and inter-plant signaling.  相似文献   

19.
A series of Northern blot hybridization experiments using probes derived from the rat gastric H+,K(+)-ATPase cDNA and the human ATP1AL1 gene revealed the presence of a 4.3-kilobase mRNA in colon that seemed likely to encode the distal colon H+,K(+)-ATPase, the enzyme responsible for K+ absorption in mammalian colon. A rat colon library was then screened using a probe from the ATP1AL1 gene, and cDNAs containing the entire coding sequence of a new P-type ATPase were isolated and characterized. The deduced polypeptide is 1036 amino acids in length and has an Mr of 114,842. The protein exhibits 63% amino acid identity to the gastric H+,K(+)-ATPase alpha-subunit and 63% identity to the three Na+,K(+)-ATPase alpha-subunit isoforms, consistent with the possibility that it is a K(+)-transporting ATPase. Northern blot analyses show that the 4.3-kilobase mRNA is expressed at high levels in distal colon; at much lower levels in proximal colon, kidney, and uterus; and at trace levels in heart and forestomach. The high mRNA levels in distal colon and the similarity of the colon pump to both gastric H+,K(+)- and Na+,K(+)-ATPases suggest that it is the distal colon H+,K(+)-ATPase. Furthermore, expression of its mRNA in kidney raises the possibility that the enzyme also corresponds to the H+,K(+)-ATPase that seems to play a role in K+ absorption and H+ secretion in the distal nephron.  相似文献   

20.
A geraniol-synthase gene from Cinnamomum tenuipilum   总被引:2,自引:0,他引:2  
Yang T  Li J  Wang HX  Zeng Y 《Phytochemistry》2005,66(3):285-293
Geraniol may accumulate up to 86-98% of the leaf essential oils in geraniol chemotypes of the evergreen camphor tree Cinnamomum tenuipilum. A similarity-based cloning strategy yielded a cDNA clone that appeared to encode a terpene synthase and which could be phylogenetically grouped within the angiosperm monoterpene synthase/subfamily. After its expression in Escherichia coli and enzyme assay with prenyl diphosphates as substrates, the enzyme encoded by the putative C. tenuipilum monoterpene synthase gene was shown to specifically convert geranyl diphosphate to geraniol as a single product by GC-MS analysis. Biochemical characterization of the partially purified recombinant protein revealed a strong dependency for Mg2+ and Mn2+, and an apparent Michaelis constant of 55.8 microM for geranyl diphosphate. Thus, a new member of the monoterpene synthase family was identified and designated as CtGES. The genome contains a single copy of CtGES gene. Expression of CtGES was exclusively observed in the geraniol chemotype of C. tenuipilum. Furthermore, in situ hybridization analysis demonstrated that CtGES mRNA was localized in the oil cells of the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号