首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2-formyl, 4-vinyl deuterohemin (1) and 2-vinyl, 4-formyl deuterohemin (2) substituted horseradish peroxidases have been prepared from apoperoxidase and the respective hemins. The two hemins bind at different rates to the apoprotein and the resultant substituted peroxidases possess different visible spectra and activities. These results indicate that the hemin 2 and 4 substituents interact with apoperoxidase and are not exposed to the solvent.  相似文献   

2.
All known heme-thiolate proteins ligate the heme iron using one cysteine side chain. We previously found that DiGeorge Critical Region 8 (DGCR8), an essential microRNA processing factor, associates with heme of unknown redox state when overexpressed in Escherichia coli. On the basis of the similarity of the 450-nm Soret absorption peak of the DGCR8-heme complex to that of cytochrome P450 containing ferrous heme with CO bound, we identified cysteine 352 as a probable axial ligand in DGCR8. Here we further characterize the DGCR8-heme interaction using biochemical and spectroscopic methods. The DGCR8-heme complex is highly stable, with a half-life exceeding 4 days. Mutation of the conserved proline 351 to an alanine increases the rate of heme dissociation and allows the DGCR8-heme complex to be reconstituted biochemically. Surprisingly, DGCR8 binds ferric heme without CO to generate a hyperporphyrin spectrum. The electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectra of the DGCR8-heme complex suggest a ferric heme bearing two cysteine ligands. This model was further confirmed using selenomethionine-substituted DGCR8 and mercury titration. DGCR8 is the first example of a heme-binding protein with two endogenous cysteine side chains serving as axial ligands. We further show that native DGCR8 binds heme when expressed in eukaryotic cells. This study provides a chemical basis for understanding the function of the DGCR8-heme interaction in microRNA maturation.  相似文献   

3.
Carbon monoxide bound to cytochrome c oxidase has been observed by Fourier transform infrared spectroscopy between 10 K and 280 K in the dark and during and after continuous photolysis. CO bound to a3Fe absorbs near 1963 cm-1, with minor bands at lower frequencies. Photolysis at low temperatures transfers CO to CuB, with the major component near 2062 cm-1 and a minor one near 2043 cm-1. Vibrational absorptions are assigned by comparison with heme and copper carbonyls, by frequency dependence of all bands on the isotopic mass of CO, and by similar behavior of major and minor components with photolysis and relaxation kinetics as a function of temperature. Reformation of a3FeCO after photolysis is an apparent first order process below 210 K with a distribution of rate constants. The kinetics are well described by a power law. Arrhenius behavior is followed between 140 K and 180 K to yield a peak activation enthalpy of 40.3 kJ/mol and a distribution in g(H) = 2.56 kJ/mol (full width at half-maximum). The major component of a3FeCO shows a very narrow CO absorption band (full width at half-maximum = 2.4 cm-1), while that of CuBCO shows a broader CO absorption (full width at half-maximum = 6 cm-1). These data indicate that in the reduced carbon monoxide complex, a3FeCO is in highly ordered nonpolar surroundings sufficiently separated from CuB that it is not perturbed by motion of the latter, while CuBCO is in less ordered, more flexible surroundings.  相似文献   

4.
Ligand trajectories trapped within a docking site or within an internal cavity near the active site of proteins are important issues toward the elucidation of the mechanism of reaction of such complex systems, in which activity requires the shuttling of oriented ligands to and from their active site. The ligand motion within ba3-cytochrome c oxidase from Thermus thermophilus has been investigated by measuring time-resolved step-scan Fourier transform infrared difference spectra of photodissociated CO from heme a3 at ambient temperature. Upon photodissociation, 15-20% of the CO is not covalently attached to CuB but is trapped within a docking site near the ring A of heme a3 propionate. Two trajectories of CO that are distinguished spectroscopically and kinetically (vCO = 2131 cm-1, td = 10-35 micros and vCO = 2146 cm-1, td = 85 micros) are observed. At later times (td = 110 micros) the docking site reorganizes about the CO and quickly establishes an energetic barrier that facilitates equilibration of the ligand with the protein solvent. The time-dependent shift of the CO trajectories we observe is attributed to a conformational motion of the docking site surrounding the ligand. The implications of these results with respect to the ability of the docking site to constrain ligand orientation and the reaction dynamics of the docking site are discussed herein.  相似文献   

5.
The ubiquinol oxidase cytochrome bo3 from Escherichia coli is one of the respiratory heme-copper oxidases which catalyze the reduction of O2 to water linked to translocation of protons across the bacterial or mitochondrial membrane. We have studied the structure of the CuB site in the binuclear heme-copper center of O2 reduction by EXAFS spectroscopy in the fully reduced state of this enzyme, as well as in the reduced CO-liganded states where CO is bound either to the heme iron or to CuB. We find that, in the reduced enzyme, CuB is coordinated by one weakly bound and two strongly bound histidine imidazoles at Cu-N distances of 2.10 and 1.92 A, respectively, and that an additional feature at 2.54 A is due to a highly ordered water molecule that might be weakly associated with the copper. Unexpectedly, the binding of CO to heme iron is found to result in a major conformational change at CuB, which now binds only two equidistant histidine imidazoles at 1.95 A and a chloride ion at 2. 25 A, with elimination of the water molecule and one of the histidines. Attempts to remove the chloride from the enzyme by extensive dialysis did not change this finding, nor did substitution of chloride with bromide. Photolysis of CO bound to the heme iron is known to cause the CO to bind to CuB in a very fast reaction and to remain bound to CuB at low temperatures. In this state, we indeed find the CO to be bound to CuB at a Cu-C distance of 1.85 A, with chloride still bound at 2.25 A and the two histidine imidazoles at a Cu-N distance of 2.01 A. These results suggest that reduction of the binuclear site weakens the bond between CuB and one of its three histidine imidazole ligands, and that binding of CO to the reduced binuclear site causes a major structural change in CuB in which one histidine ligand is lost and replaced by a chloride ion. Whether chloride is a cofactor in this enzyme is discussed.  相似文献   

6.
Ground state near-infrared absorption spectra of fully reduced unliganded and fully reduced CO (a2+ CuA+ a3(2+)-CO CuB+) cytochrome c oxidase were investigated. Flash-photolysis time-resolved absorption difference spectra of the mixed-valence (a3+ CuA2+ a3(2+)-CO CuB+) and the fully reduced CO complexes were also studied. A band near 785 nm (epsilon approximately 50 M-1cm-1) was observed in the fully reduced unliganded enzyme and the CO photoproducts. The time-resolved 785 nm band disappeared on the same timescale (t1/2 approximately 7 ms) as CO recombined with cytochrome a3(2+). This band, which is attributed to the unliganded five coordinate ferrous cytochrome a3(2+), has some characteristics of band III in deoxy-hemoglobin and deoxy-myoglobin. A second band was observed at approximately 710 nm (epsilon approximately 80 M-1cm-1) in the fully reduced unliganded and the fully reduced CO complexes. This band, which we assign to the low spin ferrous cytochrome a, appears to be affected by the ligation state at the cytochrome a3(2+) site.  相似文献   

7.
Synechocystis hemoglobin contains an unprecedented covalent bond between a nonaxial histidine side chain (H117) and the heme 2-vinyl. This bond has been previously shown to stabilize the ferric protein against denaturation, and also to affect the kinetics of cyanide association. However, it is unclear why Synechocystis hemoglobin would require the additional degree of stabilization accompanying the His117-heme 2-vinyl bond because it also displays endogenous bis-histidyl axial heme coordination, which should greatly assist heme retention. Furthermore, the mechanism by which the His117-heme 2-vinyl bond affects ligand binding has not been reported, nor has any investigation of the role of this bond on the structure and function of the protein in the ferrous oxidation state. Here we report an investigation of the role of the Synechocystis hemoglobin His117-heme 2-vinyl bond on structure, heme coordination, exogenous ligand binding, and stability in both the ferrous and ferric oxidation states. Our results reveal that hexacoordinate Synechocystis hemoglobin lacking this bond is less stable in the ferrous oxidation state than the ferric, which is surprising in light of our understanding of pentacoordinate Hb stability, in which the ferric protein is always less stable. It is also demonstrated that removal of the His117-heme 2-vinyl bond increases the affinity constant for intramolecular histidine coordination in the ferric oxidation state, thus presenting greater competition for the ligand binding site and lowering the observed rate and affinity constants for exogenous ligands.  相似文献   

8.
Laser photolysis techniques have been employed to investigate the internal electron transfer (eT) reaction within Pseudomonas aeruginosa nitrite reductase (Pa-NiR). We have measured the (d1--> c) internal eT rate for the wild-type protein and a site-directed mutant (Pa-NiR H327A) which has a substitution in the d1-heme binding pocket; we found the rate of eT to be fast, keT = 2.5 x 10(4) and 3.5 x 10(4) s-1 for the wild-type and mutant Pa-NiR, respectively. We also investigated the photodissociation of CO from the fully reduced proteins and observed microsecond first-order relaxations; these imply that upon breakage of the Fe2+-CO bond, both Pa-NiR and Pa-NiR H327A populate a nonequilibrium state which decays to the ground state with a complex time course that may be described by two exponential processes (k1 = 3 x 10(4) s-1 and k2 = 0.25 x 10(4) s-1). These relaxations do not have a kinetic difference spectrum characteristic of CO recombination, and therefore we conclude that Pa-NiR undergoes structural rearrangements upon dissociation of CO. The bimolecular rate of CO rebinding is 5 times faster in Pa-NiR H327A than in the wild-type enzyme (1.1 x 10(5) M-1 s-1 compared to 2 x 10(4) M-1 s-1), indicating that this mutation in the active site alters the CO diffusion properties of the protein, probably reducing steric hindrance. CO rebinding to the wild-type mixed valence enzyme (c3+d12+) which is very slow (k = 0.25 s-1) is proposed to be rate-limited by the c --> d1 internal eT event, involving the oxidized d1-heme which has a structure characteristic of the fully oxidized and partially oxidized Pa-NiR.  相似文献   

9.
F G Fiamingo  D W Jung  J O Alben 《Biochemistry》1990,29(19):4627-4633
Ethanol has been observed to cause a perturbation of the catalytic center of the major respiratory protein cytochrome c oxidase. These effects were examined by Fourier transform infrared spectroscopy of carbon monoxide complexes of cytochrome a3Fe and of CuB formed by low-temperature photodissociation of the a3FeCO complex. Carbon monoxide binds to reduced cytochrome oxidase in two major structural forms, alpha and beta, both of which are altered by ethanol. In the absence of ethanol, 15-22% of the total cytochrome oxidase in beef heart mitochondria was observed as beta-forms. Ethanol addition caused a concentration-dependent elimination of the beta-forms with 40% disappearing at 0.05 M (0.23%) ethanol, a concentration that can readily be achieved in the blood of intoxicated individuals. At 0.5 M (2.3%) ethanol and above, almost no beta-forms were detectable. The alpha-CuBCO absorption normally splits into two bands at temperatures below 40 K. This effect was decreased in the presence of ethanol and eliminated by high ethanol concentrations. It appears that ethanol increases the structural fluctuations at the active site of the enzyme, analogous to the effects of increased temperature. There was an 8-10% decrease in the maximum rate of oxygen reduction by mitochondrial cytochrome oxidase in 0.05 M ethanol at 24 degrees C, while higher concentrations of ethanol caused no further inhibition. This is the first demonstration that alpha- and beta-forms of cytochrome c oxidase can be modified by an externally added reagent. Changes in the spectra of alpha-CuBCO in the presence of 50% (v/v) ethylene glycol were quite striking, but variable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The C-O stretching frequencies of fully reduced carbonmonoxy cytochrome ba3, a newly discovered terminal oxidase of the bacterium Thermus thermophilus (Zimmermann, B.H., Nitsche, C.I., Fee, J.A., Rusnak, F., and Münck, E. (1988) Proc. Natl. Acad. Sci. U.S. A. 85, 5779-5783), are studied by Fourier transform infrared spectroscopy. Multiple C-O frequencies are observed in the Fourier transform infrared spectra, indicating the presence of discrete interconverting conformers of the enzyme. Upon photolysis, the CO is shown to migrate exclusively to CuB+. Above 200 K, the CO returns to the heme a3 by a thermal process which follows simple first-order kinetics. The rate of the reaction was studied from 205 to 230 K and at 300 K, yielding the activation parameters delta H = 14.9 kcal/mol and delta S = -5 cal/mol/K. These are compared with previously determined activation parameters for CO recombination in mitochondrial cytochrome aa3 preparations (Fiamingo, F.G., Altschuld, R.A., Moh, P.P., and Alben, J.O. (1982) J. Biol. Chem. 257, 1639-1650). We report the novel finding that CO remains bound to CuB+ at room temperature during continuous photolysis of cytochrome ba3, and we conjecture on the possible interference of copper-bound CO in "flow-flash" and "triple-trap" studies of cytochrome c oxidases.  相似文献   

11.
Lübben M  Prutsch A  Mamat B  Gerwert K 《Biochemistry》1999,38(7):2048-2056
Heme-copper oxidases have two putative proton channels, the so-called K-channel and the membrane-spanning D-channel. The latter contains a number of polar groups with glutamate-286 located in its center, which could-together with bound water-contribute to a transmembrane hydrogen-bonded network. Protonation states of carboxyl groups from cytochrome bo3 of Escherichia coli were studied by redox Fourier transform infrared (FTIR) difference spectroscopy. A net absorbance increase in the carboxyl region was observed upon reduction. The band signature typically found in heme-copper oxidases comprises an absorbance decrease (reduced-minus-oxidized difference spectra) at 1745 cm-1 and increase at 1735 cm-1. No significant changes in the carboxyl region were found in the site-specific mutants D135E and D407N. The difference bands were lacking in redox spectra of mutants at position 286; they could clearly be related to Glu-286. In wild-type oxidase, the pK of Glu-286 appears to be higher than 9.8. Upon solvent isotope exchange from H2O to D2O, the band at 1745 cm-1 shifts more readily than the one at 1735 cm-1, indicating dissimilar accessibility of the carboxyl side chain to the hydrogen-bonded network in both redox states. The data are consistent with a redox-triggered conformational change of Glu-286, which attributes to the carboxyl group an orientation toward the interior of the D-channel for the oxidized form. The change of Glu-286 is retained in cyanide complexes of cytochrome bo3 and of cytochrome c oxidase; therefore it should be related to oxidoreduction of the heme b and/or CuB metal centers.  相似文献   

12.
Ingledew WJ  Smith SM  Salerno JC  Rich PR 《Biochemistry》2002,41(26):8377-8384
Improvements in sensitivity and data processing of Fourier transform infrared (FTIR) spectroscopy enable it to be used to detect changes in protein structure at the atomic level. This paper reports a study of neuronal nitric oxide synthase (nNOS) by FTIR difference spectroscopy in the 1000-2500 cm(-1) range where vibrational bands of ligands, prosthetic groups, and protein and amino acid side chains are found. We have exploited the photolyzable CO compound of the ferrous heme of nNOS to produce light-induced CO photolysis difference spectra and to compare spectra after hydrogen/deuterium exchange. In (reduced) minus (reduced plus CO) difference spectra, negative bands at 1931 and 1907 cm(-1) are observed due to photolysis of multiple forms of ferrous heme-ligated CO, similar to those observed by resonance Raman spectroscopy [Wang et al. (1997) Biochemistry 36, 4595-4606]. Photolysis of the ferrous heme CO compound is accompanied by hitherto unreported changes in the 1000-2000 cm(-1) region that arise from changes of protein backbone, substrate, amino acid side chain, and cofactor vibrations. Preliminary assignments of vibrations are made on the basis of frequencies and the effects of hydrogen/deuterium exchange, and in the light of known atomic structures.  相似文献   

13.
The reaction between reduced Pseudomonas cytochrome c551 and cytochrome oxidase with two inorganic metal complexes, Co(phen)3(3+) and Mn(CyDTA)(H2O)-, has been followed by stopped-flow spectrophotometry. The electron transfer to cytochrome c551 by both reactants is a simple process, characterized by the following second-order rate constant: k = 4.8 X 10(4) M-1 sec-1 in the case of Co(phen)3(3+) and k = 2.3 X 10(4) M-1 sec-1 in the case of Mn(CyDTA)(H2O)-. The reaction of the c-heme of the oxidase with both metal complexes is somewhat heterogeneous, the overall process being characterized by the following second-order rate constants: k = 1.7 X 10(3) M-1 sec-1 with Co(phen)3(3+) and k = 4.3 X 10(4) M-1 sec-1 with Mn(CyDTA)(H2O)- as oxidants; under CO (which binds to the d1-heme) the former constant increases by a factor of 2, while the latter does not change significantly. The oxidation of the d1-heme of the oxidase by Co(phen)3(3+) occurs via intramolecular electron transfer to the c-heme, a direct bimolecular transfer from the complex being operative only at high metal complex concentrations; when Mn(CyDTA)(H2O)- is the oxidant, the bimolecular oxidation of the d1-heme competes successfully with the intramolecular electron transfer.  相似文献   

14.
We have used cryogenic difference FTIR and time-resolved step-scan Fourier transform infrared (TR-FTIR) spectroscopies to explore the redox-linked proton-pumping mechanism of heme-copper respiratory oxidases. These techniques are used to probe the structure and dynamics of the heme a(3)-Cu(B) binuclear center and the coupled protein structures in response to the photodissociation of CO from heme Fe and its subsequent binding to and dissociation from Cu(B). Previous cryogenic (80 K) FTIR CO photodissociation difference results were obtained for cytochrome bo(3), the ubiquinol oxidase of Escherichia coli [Puustinen, A., et al. (1997) Biochemistry 36, 13195-13200]. These data revealed a connectivity between Cu(B) and glutamic acid E286, a residue which has been implicated in proton pumping. In the current work, the same phenomenon is observed using the CO adduct of bovine cytochrome aa(3) under cryogenic conditions, showing a perturbation of the equivalent residue (E242) to that in bo(3). Furthermore, using time-resolved (5 micros resolution) step-scan FTIR spectroscopy at room temperature, we observe the same spectroscopic perturbation in both cytochromes aa(3) and bo(3). In addition, we observe evidence for perturbation of a second carboxylic acid side chain, at higher frequency in both enzymes at room temperature. The high-frequency feature does not appear in the cryogenic difference spectra, indicating that the perturbation is an activated process. We postulate that the high-frequency IR feature is due to the perturbation of E62 (E89 in bo(3)), a residue near the opening of the proton K-channel and required for enzyme function. The implications of these results with respect to the proton-pumping mechanism are discussed. Finally, a fast loss of over 60% of the Cu(B)-CO signal in bo(3) is observed and ascribed to one or more additional conformations of the enzyme. This fast conformer is proposed to account for the uninhibited reaction with O(2) in flow-flash experiments.  相似文献   

15.
Interaction of nitric oxide with human heme oxygenase-1   总被引:2,自引:0,他引:2  
NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.  相似文献   

16.
The rebinding of CO to cytochrome c oxidase from Paracoccus denitrificans in the fully reduced and in the half-reduced (mixed valence) form as a function of temperature was investigated using time-resolved rapid-scan FT-IR spectroscopy in the mid-IR (1200-2100 cm-1). For the fully reduced enzyme, rebinding was complete in approximately 2 s at 268 K and showed a biphasic reaction. At 84 K, nonreversible transfer of CO from heme a3 to CuB was observed. Both photolysis at 84 K and photolysis at 268 K result in FT-IR difference spectra which show similarities in the amide I, amide II, and heme modes. Both processes, however, differ in spectral features characteristic for amino acid side chain modes and may thus be indicative for the motional constraint of CO at low temperature. Rebinding of photodissociated CO for the mixed-valence enzyme at 268 K is also biphasic, but much slower as compared to the fully reduced enzyme. FT-IR difference spectra show band features similar to those for the fully reduced enzyme. Additional strong bands in the amide I and amide II range indicate local conformational changes induced by electron and coupled proton transfer. These signals disappear when the temperature is lowered to 84 K. At 268 K, a difference signal at 1746 cm-1 is observed which is shifted by 6 cm-1 to 1740 cm-1 in 2H2O. The absence of this signal for the mutant Glu 278 Gln allows assignment to the COOH stretching mode of Glu 278, and indicates changes of the conformation, proton position, or protonation of this residue upon electron transfer.  相似文献   

17.
The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a(3) moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba(3)-oxidase from Thermus thermophilus, determined at ~2.8-3.2? resolution, reveal a Fe-C distance of ~2.0?, a Cu-O distance of 2.4? and a Fe-C-O angle of ~126°. Upon photodissociation at 100K, X-ray structures indicate loss of Fe(a3)-CO and appearance of Cu(B)-CO having a Cu-C distance of ~1.9? and an O-Fe distance of ~2.3?. Absolute FTIR spectra recorded from single crystals of reduced ba(3)-CO that had not been exposed to X-ray radiation, showed several peaks around 1975cm(-1); after photolysis at 100K, the absolute FTIR spectra also showed a significant peak at 2050cm(-1). Analysis of the 'light' minus 'dark' difference spectra showed four very sharp CO stretching bands at 1970cm(-1), 1977cm(-1), 1981cm(-1), and 1985cm(-1), previously assigned to the Fe(a3)-CO complex, and a significantly broader CO stretching band centered at ~2050cm(-1), previously assigned to the CO stretching frequency of Cu(B) bound CO. As expected for light propagating along the tetragonal axis of the P4(3)2(1)2 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba(3) crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO(2) at 2337cm(-1) and one from traces of CO at 2133cm(-1); while bands associated with CO bound to either Fe(a3) or to Cu(B) in "light" minus "dark" FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2? and FTIR spectra support the long-held position that photolysis of Fe(a3)-CO in cytochrome c oxidases leads to significant trapping of the CO on the Cu(B) atom; Fe(a3) and Cu(B) ligation, at the resolutions reported here, are otherwise unaltered.  相似文献   

18.
Miksovská J  Gennis RB  Larsen RW 《FEBS letters》2005,579(14):3014-3018
Here, we report the volume and enthalpy changes accompanying CO photodissociation from the mixed valence form of cytochrome bo3 oxidase from Escherichia coli. The results of photoacoustic calorimetry indicate two kinetic phases with distinct volume and enthalpy changes accompanying CO photodissociation from heme o3 and its transfer to CuB. The first phase occurring on a timescale of <50 ns is characterized by a volume decrease of -1.3+/-0.3 mL mol-1 and enthalpy change of 32+/-1.6 kcal mol-1. Subsequently, a volume increase of 2.9 mL mol-1 with an enthalpy change of -5.3+/-2.5 kcal mol-1 is observed with the lifetime of approximately 250 ns (this phase has not been detected in previous optical studies). These volume and enthalpy changes differ from the volume and enthalpy changes observed for CO dissociation from fully reduced cytochrome bo3 oxidase indicating that the heme o3/CuB active site dynamics are affected by the redox state of heme b.  相似文献   

19.
Amide-I and II vibrations of α-helix have been treated on the basis of the perturbation theory in a dipole–dipole approximation. The infinite helix and its finite fragments have been considered as models. The calculated infrared spectra for the infinite helix are in good agreement with the spectra of synthetic polypeptides. In the case of finite fragments of the α-helix, the characteristic contours of the amide-I and II bands appear when the nuimber of peptide groups is about 10 and 6, respectively.  相似文献   

20.
The proton pumping mechanism of cytochrome c oxidase on a molecular level is highly disputed. Recently theoretical calculations and real time electron transfer measurements indicated the involvement of residues in the vicinity of the ring A propionate of heme a3, including Asp399 and the CuB ligands His 325, 326. In this study we probed the interaction of Asp399 with the binuclear center and characterize the protonation state of its side chain. Redox induced FTIR difference spectra of mutations at the site in direct comparison to wild type, indicate that below pH 5 Asp 399 displays signals typical for the deprotonation of the acidic residue with reduction of the enzyme. Interestingly at a pH higher than 5, no contributions from Asp 399 are evident. In order to probe the interaction of the site with the binuclear center we followed the rebinding of CO by infrared spectroscopy for mutations on residue Asp399 to Glu, Asn and Leu. Previously different CO conformers have been identified for bacterial cytochrome c oxidases, and its pH dependent behaviour discussed to be relevant for catalysis. Interestingly we observe the lack of this pH dependency and a strong influence on the observable conformers for all mutants studied here, clearly suggesting a communication of the site with the heme-copper center and the nearby histidine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号