首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A metagenomic library containing ca. 3.06 × 108 bp insert DNA was constructed from a rice straw degrading enrichment culture. A xylanase gene, umxyn10A, was cloned by screening the library for xylanase activity. The encoded enzyme Umxyn10A showed 58% identity and 73% similarity with a xylanase from Thermobifida fusca YX. Sequence analyses showed that Umxyn10A contained a glycosyl hydrolase family 10 catalytic domain. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified and characterized biochemically. Recombinant Umxyn10A was highly active toward xylan. However, the purified enzyme could slightly hydrolyze β-1,3/4-glucan and β-1,3/6-glucan. Umxyn10A displayed maximal activity toward oat spelt xylan at a high temperature (75°C) and weak acidity (pH 6.5). The K m and V max of Umxyn10A toward oat spelt xylan were 3.2 mg ml−1 and 0.22 mmol min−1 mg−1 and were 2.7 mg ml−1 and 1.0 mmol min−1 mg−1 against birchwood xylan, respectively. Metal ions did not appear to be required for the catalytic activity of this enzyme. The enzyme Umxyn10A could efficiently hydrolyze birchwood xylan to release xylobiose as the major product and a negligible amount of xylose. The xylanase identified in this work may have potential application in producing xylobiose from xylan.  相似文献   

2.
AimsZ: To characterize fibre degradation, colonization and fermentation, and xylanase activity of two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human colon. Methods and Results: The bacteria grew well on all the substrates chosen to represent dietary fibres: wheat and corn bran, pea, cabbage and leek fibres, and also on purified xylans. Roseburia intestinalis colonized the substrates more efficiently than Bact. xylanisolvens. For the two bacteria, 80–99% of the total xylanase activity was associated with the cells whatever the substrate and time of growth. Optimal specific activities of cells were obtained on oat spelt xylan; they were higher than those previously measured for xylanolytic bacteria from the human gut. Roseburia intestinalis produced high molecular mass xylanases (100–70 kDa), while Bact. xylanisolvens produced lower molecular mass enzymes, including a cell‐associated xylanase of 37 kDa. Conclusions: The two bacteria display very high xylanolytic activity on the different substrates. Differences were observed on substrate attachment and enzyme systems, suggesting that the two species occupy different niches within the gut microbiota. Significance and Impact of the Study: This study characterizes xylan degradation by two major species of the human intestine.  相似文献   

3.
A complete gene, xyl10C, encoding a thermophilic endo-1,4-β-xylanase (XYL10C), was cloned from the acidophilic fungus Bispora sp. MEY-1 and expressed in Pichia pastoris. XYL10C shares highest nucleotide and amino acid sequence identities of 57.3 and 49.7%, respectively, with a putative xylanase from Aspergillus fumigatus Af293 of glycoside hydrolase family 10. A high expression level in P. pastoris (73,400 U ml−1) was achieved in a 3.7–l fermenter. The purified recombinant XYL10C was thermophilic, exhibiting maximum activity at 85°C, which is higher than that reported from any fungal xylanase. The enzyme was also highly thermostable, exhibiting ~100% of the initial activity after incubation at 80°C for 60 min and >87% of activity at 90°C for 10 min. The half lives of XYL10C at 80 and 85°C were approximately 45 and 3 h, respectively. It had two activity peaks at pH 3.0 and 4.5–5.0 (maximum), respectively, and was very acid stable, retaining more than 80% activity after incubation at pH 1.5−6.0 for 1 h. The enzyme was resistant to Co2+, Mn2+, Cr3+ and Ag+. The specific activity of XYL10C for oat spelt xylan was 18,831 U mg−1. It also had wide substrate specificity and produced simple products (65.1% xylose, 25.0% xylobiose and 9.9% xylan polymer) from oat spelt xylan.  相似文献   

4.
We cloned and sequenced a xylanase gene named xylD from the acidophilic fungus Bispora sp. MEY-1 and expressed the gene in Pichia pastoris. The 1,422-bp full-length complementary DNA fragment encoded a 457-amino acid xylanase with a calculated molecular mass of 49.8 kDa. The mature protein of XYLD showed high sequence similarity to both glycosyl hydrolase (GH) families 5 and 30 but was more homologous to members of GH 30 based on phylogenetic analysis. XYLD shared the highest identity (49.9%) with a putative endo-1,6-β-d-glucanase from Talaromyces stipitatus and exhibited 21.1% identity and 34.3% similarity to the well-characterized GH family 5 xylanase from Erwinia chrysanthemi. Purified recombinant XYLD showed maximal activity at pH 3.0 and 60 °C, maintained more than 60% of maximal activity when assayed at pH 1.5–4.0, and had good thermal stability at 60 °C and remained stable at pH 1.0–6.0. The enzyme activity was enhanced in the presence of Ni2+ and β-mercaptoethanol and inhibited by some metal irons (Hg2+, Cu2+, Pb2+, Mn2+, Li+, and Fe3+) and sodium dodecyl sulfate. The specific activity of XYLD for beechwood xylan, birchwood xylan, 4-O-methyl-d-glucuronoxylan, and oat spelt xylan was 2,463, 2,144, 2,020, and 1,429 U mg−1, respectively. The apparent K m and V max values for beechwood xylan were 5.6 mg ml−1 and 3,622 μmol min−1 mg−1, respectively. The hydrolysis products of different xylans were mainly xylose and xylobiose.  相似文献   

5.
A thermo stable xylanase was purified and characterized from the cladodes of Cereus pterogonus plant species. The enzyme was purified to homogeneity by ammonium sulfate (80%) fractionation, ion exchange and size exclusion chromatography. The enzyme showed a final specific activity of 216.2 U/mg and the molecular mass of the protein was 80 KDa. The optimum pH and temperature for xylanase activity were 5.0 and 80 °C, respectively,. With oat spelt xylan as a substrate the enzyme yielded a Km value of 2.24 mg/mL and a Vmax of 5.8 μmol min−1 mg−1. In the presence of metal ions (1 mM) such as Co2+,Mn2+, Ni2+, Ca2+ and Fe3+ the activity of the enzyme increased, where as strong inhibition of the enzyme activity was observed with the use of Hg2+, Cd2+, Cu2+, while partial inhibition was noted with Zn2+ and Mg2+. The substrate specificity of the xylanase yielded maximum activity with oat spelt xylan.  相似文献   

6.
A new xylanase gene, named xyn186, was cloned by the genome-walking PCR method from the Alternaria sp. HB186. The sequence of xyn186 contains a 748 bp open reading frame separated by one intron with the size of 52 bp. The cDNA was obtained by DpnI-mediated intron deletion. The cDNA was cloned into pHBM905A and transformed into Pichia pastoris GS115 to screen xylanase-secreting transformants on RBB-xylan plates. The molecular mass of the enzyme was estimated to be 23 kDa on SDS-PAGE. The optimal pH and temperature of the purified enzyme is 6 and 50°C, respectively. The K m and V max valued for birchwood xylan are 1.404 mg ml−1 and 0.2748 mmol min−1 mg−1, respectively. The inhibitory effects of various metal ions were investigated, Cu2+ and Hg2+ ions inhibited most of the enzyme activity. The gene copy number of xyn186 in the genome of P. pastoris was estimated as two by the Real-time PCR. To date, xyn186 gene is the first xylanase gene cloned from the genus Alternaria.  相似文献   

7.
Melanocarpus albomyces, a thermophilic fungus isolated from compost by enrichment culture in a liquid medium containing sugarcane bagasse, produced cellulase-free xylanase in culture medium. The fungus was unusual in that xylanase activity was inducible not only by hemicellulosic material but also by the monomeric pentosan unit of xylan but not by glucose. Concentration of bagasse-grown culture filtrate protein followed by size-exclusion and anion-exchange chromatography separated four xylanase activities. Under identical conditions of protein purification, xylanase I was absent in the xylose-grown culture filtrate. Two xylanase activities, a minor xylanase IA and a major xylanase IIIA, were purified to apparent homogeneity from bagasse-grown cultures. Both xylanases were specific forβ-1,4 xylose-rich polymer, optimally active, respectively, at pH 6.6 and 5.6, and at 65°C. The xylanases were stable between pH 5 to 10 at 50°C for 24 h. Xylanases released xylobiose, xylotriose and higher oligomers from xylans from different sources. Xylanase IA had a Mr of 38 kDa and contained 7% carbohydrate whereas xylanase IIIA had a Mr of 24 kDa and no detectable carbohydrate. The Km for larchwood xylan (mg ml−1) and Vmax (μmol xylose min−1 mg−1 protein) of xylanase IA were 0.33 and 311, and of xylanase IIIA 1.69 and 500, respectively. Xylanases IA, II and IIIA showed no synergism in the hydrolysis of larchwood glucuronoxylan or oat spelt and sugarcane bagasse arabinoxylans. They had different reactivity on untreated and delignified bagasse. The xylanases were more reactive than cellulase on delignified bagasse. Simultaneous treatment of delignified bagasse by xylanase and cellulase released more sugar than individual enzyme treatments. By contrast, the primary cell walls of a plant, particularly from the region of elongation, were more susceptible to the action of cellulase than xylanase. The effects of xylanase and cellulase on plant cell walls were consistent with the view that hemicellulose surrounds cellulose in plant cell walls.  相似文献   

8.
Transplantation is useful for elucidating the functions of structural modules and for engineering enzyme properties. Unexpectedly, transplanting a hyper-thermophilic carbohydrate-binding module, CBM9_1-2, into the mesophilic Aspergillus niger GH11 xylanase (Xyn) slightly decreased the thermal inactivation half-life of Xyn. This effect was further investigated by dividing the CBM9_1-2 module into two smaller parts, C1 and C2, which were transplanted into Xyn to create the chimeras Xyn-C1 and Xyn-C2. Both chimeras exhibited higher catalytic activities on xylan than native Xyn. Xyn-C2 exhibited higher binding affinities for both oat spelt and birch wood xylans, and its thermal inactivation half-life (69.3 min) was 4 or 5 times longer than that of Xyn (17.6 min), Xyn-C1 (13.4 min), and the original chimera containing CBM9_1-2 (13.8 min). In contrast, Xyn-C1 exhibited higher binding affinity for oat spelt xylan, but not for birch wood xylan. Through this rational engineering of the fungal xylanase, the C2 sub-module was shown to have a different thermostabilizing effect than the C1 sub-module. The different functions of the smaller parts of a large module can play pivotal roles in transplantation.  相似文献   

9.
Highly thermostable β-xylanase produced by newly isolated Thermomyces lanuginosus THKU-49 strain was purified in a four-step procedure involving ammonium sulfate precipitation and subsequent separation on a DEAE-Sepharose fast flow column, hydroxylapatite column, and Sephadex G-100 column, respectively. The enzyme purified to homogeneity had a specific activity of 552 U/mg protein and a molecular weight of 24.9 kDa. The optimal temperature of the purified xylanase was 70°C, and it was stable at temperatures up to 60°C at pH 6.0; the optimal pH was 5.0–7.0, and it was stable in the pH range 3.5–8.0 at 4°C. Xylanase activity was inhibited by Mn2+, Sn2+, and ethylenediaminetetraacetic acid. The xylanase showed a high activity towards soluble oat spelt xylan, but it exhibited low activity towards insoluble oat spelt xylan; no activity was found to carboxymethylcellulose, avicel, filter paper, locust bean gum, cassava starch, and p-nitrophenyl β-d-xylopyranoside. The apparent K m value of the xylanase on soluble oat spelt xylan and insoluble oat spelt xylan was 7.3 ± 0.236 and 60.2 ± 6.788 mg/ml, respectively. Thin-layer chromatography analysis showed that the xylanase hydrolyzed oat spelt xylan to yield mainly xylobiose and xylose as end products, but that it could not release xylose from the substrate xylobiose, suggesting that it is an endo-xylanase.  相似文献   

10.
Endo-mannanases and endo-xylanases cleave different heteromannans and xylans yielding mainly dimers and trimers of the corresponding sugars as end-products. However, in the early stages of hydrolysis, four purified mannanases and four xylanases from fungal and bacterial origin, examined in this study, showed a different pattern of released oligomers (determined up to the pentamers). Furthermore, some of these enzymes showed a preference for cleaving the polysaccharides in the middle of the chain while others acted more at the end. When the increase in the specific fluidity of mannan and xylan solutions per reducing sugar released (K v) was measured against the bleaching effect of the enzymes on softwood kraft pulp, a correlation was found. A xylanase from Penicillium simplicissimum (K v = 0.15 l mPa−1s−1g−1) and a mannanase from Sclerotium rolfsii (K v = 0.12 l mPa−1s−1g−1) applied in a O(QX)P bleaching sequence (O = oxygen delignification, X = treatment with hemicellulolytic enzymes, Q = chelation of metals, P = treatment with hydrogen peroxide in alkaline solution) gave a high brightness increase of 3.0% and 1.9% ISO respectively. A less significant brightness increase was obtained with enzymes showing lower K v values, such as a xylanase from Schizophyllum commune (Kv = 0.051  l mPa−1s−1g−1, 0.2% ISO) and a bacterial mannanase (K v = 0.061 l mPa−1s−1g−1,0.5% ISO). Received: 19 December 1996 / Received revision: 20 February 1997 / Accepted: 22 February 1997  相似文献   

11.
A xylanase gene (xyn10) from alkaliphilic Bacillus sp. N16-5 was cloned and expressed in Pichia pastoris. The deduced amino acid sequence has 85% identity with xylanase xyn10A from B. halodurans and contains two potential N-glycosylation sites. The glycosylated Xyn10 with MW 48 kDa can hydrolyze birchwood and oatspelt xylan. The enzyme had optimum activity at pH 7 and 70°C, with the specific activity of 92.5U/mg. The Xyn10 retained over 90% residual activity at 60°C for 30 min but lost all activity at 80°C over 15 min. Most tested ions showed no or slight inhibition effects on enzyme activity.  相似文献   

12.
A thermostable xylanase gene, xyn10A (CAP0053), was cloned from Clostridium acetobutylicum ATCC 824. The nucleotide sequence of the C. acetobutylicum xyn10A gene encoded a 318-amino-acid, single-domain, family 10 xylanase, Xyn10A, with a molecular mass of 34 kDa. Xyn10A exhibited extremely high (92%) amino acid sequence identity with Xyn10B (CAP0116) of this strain and had 42% and 32% identity with the catalytic domains of Rhodothermus marinus xylanase I and Thermoascus aurantiacus xylanase I, respectively. Xyn10A enzyme was purified from recombinant Escherichia coli and was highly active toward oat-spelt and Birchwood xylan and slightly active toward carboxymethyl cellulose, arabinogalactouronic acid, and various p-nitrophenyl monosaccharides. Xyn10A hydrolyzed xylan and xylooligosaccharides larger than xylobiose to produce xylose. This enzyme was optimally active at 60°C and had an optimum pH of 5.0. This is one of a number of related activities encoded on the large plasmid in this strain.  相似文献   

13.
 Using recombinant DNA techniques, an Aspergillus nidulans multicopy transformant for the gene xlnB coding for the minor X24 xylanase has been constructed. When grown on glucose as sole carbon source this transformant secretes 114 U of xylanase (mg protein)-1. In this culture condition, X24 is the only xylanase secreted and the predominant protein in the culture filtrate. This strategy has been used to purify the X24 enzyme to homogeneity. The purified xylanase showed a single band on sodium dodecyl sulphate/ polyacrylamide gel electrophoresis with a molecular mass of 24 kDa and had an isoelectric point of approximately 3.5. The enzyme was a non-debranching endo-1,4-β-xylan xylanohydrolase highly specific for xylans and showed optimal activity at pH 5.5 and 52°C. The X24 xylanase had a Michaelis constant, K m, of 12.43 mg oat spelt xylan ml-1 and a V max of 1639 μmol min-1 (mg protein)-1. Received: 17 May 1995/Received last revision: 25 September 1995/Accepted: 29 September 1995  相似文献   

14.
A cellulase-free xylanase production by Thermomyces lanuginosus SSBP using bagasse pulp was examined under submerged (SmC) and solid-state cultivation (SSC). Higher level of xylanase activity (19,320 ± 37 U g−1 dried carbon source) was obtained in SSC cultures than in SmC (1,772 ± 15 U g−1 dried carbon source) after 120 h with 10% inoculum. The biobleaching efficacy of crude xylanase was tested on bagasse pulp, and the maximum brightness of 46.1 ± 0.06% was observed with 50 U of crude xylanase per gram of pulp, which was 3.8 points higher than the brightness of untreated samples. Reducing sugars (26 ± 0.1 mg g−1) and UV-absorbing lignin-derived compounds in the pulp filtrates were observed as maximum in 50 U of crude xylanase-treated samples. T. lanuginosus SSBP has potential applications due to its high productivity of xylanase and its efficiency in pulp bleaching.  相似文献   

15.
The cellulolytic myxobacterium Sorangium cellulosum is able to efficiently degrade many kinds of polysaccharides, but none of the enzymes involved have been characterized. In this paper, a xylanase gene (xynA) was cloned from S. cellulosum So9733-1 using thermal asymmetric interlaced PCR. The gene is composed of 1,209 bp and has only 52.27% G + C content, which is much lower than that of most myxobacterial DNA reported (67–72%). Gene xynA encodes a 402 amino acid protein that contains a single catalytic domain belonging to the glycoside hydrolase family 10. The novel xylanase gene, xynA, was expressed in Escherichia coli BL21 (DE3) and the recombinant protein (r-XynA) was purified by Ni-affinity chromatography. The r-XynA had the optimum temperature of 30–35°C and exhibited 33.3% activity at 5°C and 13.7% activity at 0°C. Approximately 80% activity was lost after 20-min pre-incubation at 50°C. These results indicate that r-XynA is a cold-active xylanase with low thermostability. At 30°C, the K m values of r-XynA on beechwood xylan, birchwood xylan, and oat spelt xylan were 25.77 ± 4.16, 26.52 ± 4.78, and 38.13 ± 5.35 mg/mL, respectively. The purified r-XynA displayed optimum activity at pH 7.0. The activity of r-XynA was enhanced by the presence of Ca2+. The r-XynA hydrolyzed beechwood xylan, birchwood xylan, and xylooligosaccharides (xylotriose, xylotetraose, and xylopentose) to produce primarily xylose and xylobiose. To our knowledge, this is the first report on the characterization of a xylanase from S. cellulosum.  相似文献   

16.
A third xylanase (Xyn III) from Trichoderma reesei PC-3–7 was purified to electrophoretic homogeneity by gel filtration and ion-exchange chromatographies. The enzyme had a molecular mass of 32 kDa, and its isoelectric point was 9.1. The pH optimum of Xyn III was 6.0, similar to that of Xyn II, another basic xylanase of  T. reesei. The purified Xyn III showed high activity with birchwood xylan but no activity with cellulose and aryl glycoside. The hydrolysis of birchwood xylan by Xyn III produced mainly xylobiose, xylotriose and other xylooligosaccharides. The amino acid sequences of the N-terminus and internal peptides of Xyn III exhibited high homology with the family F xylanases, showing that they were distinct from those of Xyn I and Xyn II of  T. reesei, which belong to family G. These results reveal that Xyn III is a new specific endoxylanase, differing from Xyn I and Xyn II in  T. reesei. It is noteworthy that this novel xylanase was induced only by cellulosic substrates and l-sorbose but not by xylan and its derivarives. Furthermore,  T. reesei PC-3-7 produced Xyn III in quantity when grown on Avicel or lactose as a carbon source, while  T. reesei QM9414 produced little or no Xyn III. Received: 7 November 1997 / Received last revision: 2 February 1988 / Accepted: 23 February 1998  相似文献   

17.
An anaerobic microorganism termed AN-C16-KBRB was isolated from the bovine rumen and demonstrated cellulolytic activity on a NB agar plate containing azo-carboxymethyl cellulose. The 16S rRNA gene of the strain was 98% similar to that of Clostridiaceae bacterium SK082 (AB298754) as the highest homology. A novel celEdx16 gene encoding a bifunctional endo-/exocellulase (CelEdx16) was cloned by the shotgun method from AN-C16-KBRB, and the enzyme was characterized. The celEdx16 gene had an open reading frame of 1,104-base pairs, which encoded 367 amino acids to yield a protein of molecular mass 40.4 kDa. The amino acid sequence was 53% identical to that of an endoglucanase from Clostridium thermocellum. CelEdx16 was overexpressed in Escherichia coli and purified using Ni-NTA affinity chromatography. The specific endocellulase and exocellulase activities of CelEdx16 were 15.9 and 3.6 × 10−2 U mg−1, respectively. The Michaelis–Menten constant (K m values) and the maximal reaction velocities (V max values) of CelEdx16 were 47.1 μM and 9.6 × 10−3 μmole min−1 when endocellulase activity was measured and 106.3 μM and 2.1 × 10−5 μmole min−1 when exocellulase activity was assessed. CelEdx16 was optimally active at pH 5.0 and 40°C.  相似文献   

18.
A superoxide dismutase (SOD) was characterized from Beauveria bassiana, a fungal entomopathogen widely applied to insect control. This 209-aa enzyme (BbSod2) showed no more than 71% sequence identity to other fungal Mn-SODs, sharing all conserved residues with the Mn-SOD family and lacking a mitochondrial signal. The SOD activity of purified BbSod2 was significantly elevated by Mn2+, suppressed by Cu2+ and Zn2+ but inhibited by Fe3+. Overexpressing the enzyme in a BbSod2-absent B. bassiana strain enhanced its SOD activity (107.2 ± 6.1 U mg−1 protein) by 4–10-fold in different transformants analyzed. The best BbSod2-transformed strain with the SOD activity of 1,157.9 ± 74.7 U mg−1 was 93% and 61% more tolerant to superoxide-generating menadione in both colony growth (EC50 = 2.41 ± 0.03 versus 1.25 ± 0.01 mM) and conidial germination (EC50 = 0.89 ± 0.06 versus 0.55 ± 0.07 mM), and 23% more tolerant to UV-B irradiation (LD50 = 0.49 ± 0.02 versus 0.39 ± 0.01 J cm−2). Its virulence to Spodoptera litura larvae was enhanced by 26% [LT50 = 4.5 (4.2–4.8) versus 5.7 (5.2–6.4) days]. Our study highlights for the first time that the Mn2+-cofactored, cytosolic BbSod2 contributes significantly to the virulence and stress tolerance of B. bassiana and reveals possible means to improving field persistence and efficacy of a fungal formulation by manipulating the antioxidant enzymes of a candidate strain.  相似文献   

19.
A new xylanase from a Trichoderma harzianum strain   总被引:1,自引:0,他引:1  
A new xylanase (XYL2) was purified from solid-state cultures of Trichoderma harzianum strain C by ultrafiltration and gel filtration. SDS-PAGE of the xylanase showed an apparent homogeneity and molecular weight of 18 kDa. It had the highest activity at pH 5.0 and 45°C and was stable at 50°C and pH 5.0 up to 4 h xylanase. XYL2 had a low K m with insoluble oat spelt xylan as substrate. Compared to the amino acid composition of xylanases from Trichoderma spp, xylanase XYL2 presented a high content of glutamate/glutamine, phenylalanine and cysteine, and a low content of serine. Xylanase XYL2 improved the delignification and selectivity of unbleached hardwood kraft pulp. Received 02 February 1999/ Accepted in revised form 17 April 1999  相似文献   

20.
Penaeus vannamei lipase was purified from midgut gland of whiteleg shrimp. Pure lipase (E.C. 3.1.1.3) was obtained after Superdex 200 gel filtration and Resource Q anionic exchange. The pure lipase, which is a glycosylated molecule, is a monomer having a molecular mass of about 44.8 kDa, as determined by SDS-PAGE analysis. The lipase hydrolyses short and long-chain triacylglycerols and naphthol derivates at comparable rates. A specific activity of 1787 U mg−1 and 475 U mg−1 was measured with triolein and tributyrin as substrates, respectively, at pH 8.0 and 30°C in the absence of colipase. The lipase showed a K m, app of 3.22 mM and k cat, app/K m, app of 0.303 × 103 mM−1 s−1 using triolein as substrate. Natural detergents, such as sodium deoxycholate, act as potent inhibitors of the lipase. This inhibition can be reversed by adding fresh oil emulsion. Result with tetrahydrolipstatin, an irreversible inhibitor, suggests that the lipase is a serine enzyme. Peptide sequences of the lipase were determined and compared with the full-length sequence of lipase which was obtained by the rapid amplification of cDNA ends method. The full cDNA of the pvl was 1,186 bp, with a deduced protein of 362 amino acids that includes a consensus sequence (GXSXG) of the lipase superfamily of α/β-hydrolase. The gene exhibits features of conserved catalytic residues and high homology with various mammalian and insect lipase genes. A potential lid sequence is suggested for pvl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号