首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
Tessler LA  Mitra RD 《Proteomics》2011,11(24):4731-4735
Single-molecule protein analysis provides sensitive protein quantitation with a digital read-out and is promising for studying biological systems and detecting biomarkers clinically. However, current single-molecule platforms rely on the quantification of one protein at a time. Conventional antibody microarrays are scalable to detect many proteins simultaneously, but they rely on less sensitive and less quantitative quantification by the ensemble averaging of fluorescent molecules. Here, we demonstrate a single-molecule protein assay in a microarray format enabled by an ultra-low background surface and single-molecule imaging. The digital read-out provides a highly sensitive, low femtomolar limit of detection and four orders of magnitude of dynamic range through the use of hybrid digital-analog quantification. From crude cell lysate, we measured levels of p53 and MDM2 in parallel, proving the concept of a digital antibody microarray for use in proteomic profiling. We also applied the single-molecule microarray to detect the p53-MDM2 protein complex in cell lysate. Our study is promising for development and application of single-molecule protein methods because it represents a technological bridge between single-plex and highly multiplex studies.  相似文献   

2.
The advances in genomics and proteomics have unveiled an exhaustive catalogue of biomarkers that can potentially be used as diagnostic and prognostic indicators of genetic and infectious diseases. Current thrust in biosensor development is towards rapid, real-time, label-free and highly sensitive detection of the indicative biomarkers. While surface plasmon resonance imaging (SPRi) biosensors could potentially be the best suited candidate for biomarker-based diagnosis, important milestones need to be reached. Commercially available SPRi instrumentation is currently limited by the flow-cell technology to serial-sample processing and has limited sensitivity for the detection of markers present at low concentration. In this paper, we have implemented an approach to enhance sample handling and increase the sensitivity of the SPRi detection technique. We have developed a digital microfluidic platform with an integrated nanostructured biosensor interface that allows for rapid, ultra-low volume, sensitive, and automated on-chip SPRi detection of DNA hybridization reactions. Through the exploitation of electromagnetic properties of nanofabricated periodic gold nanoposts, SPRi signal was increased by 200% with the estimated limit of detection of 500 pM (90 attomoles). Using the versatile fluidic manipulation provided by the digital microfluidics, rapid and parallel target identification was achieved on multiple array elements within 1 min using 180 nL sample volume. By delivering multiple target analytes in individually addressable low volume droplets, without external pumps and fluidic interconnects, the overall assay time, cost and complexity was reduced. The proposed platform allows extreme versatility in the manipulation of precious low volume samples which makes this technology very suitable for diagnostic applications.  相似文献   

3.
Lectin microarrays have emerged as a novel platform for glycan analysis during recent years. Here, we have combined surface plasmon resonance imaging (SPRi) with the lectin microarray for rapid and label-free profiling of stem cells. In this direction, 40 lectins from seven different glyco-binding motifs and three different cell lines—mouse embryonic stem cells (mESCs), mouse-induced pluripotent stem cells (miPSCs), and mouse embryonic fibroblast stem cells (MEFs)—were used. Pluripotent mouse stem cells were clearly distinguished from non-pluripotent stem cells. Eight lectins—DBA, MAL, PHA_E, PHA_L, EEL, AAL, PNA, and SNA—generated maximal value to define pluripotency of mouse stem cells in our experiments. The discriminant function based on lectin reactivities was highly accurate for the determination of stem cell pluripotency. These results suggested that glycomic analysis of stem cells leads to a novel comprehensive approach for quality control in cell-based therapy and regenerative medicine.  相似文献   

4.
Microarrays are promising tools for cell isolation and detection. However, they have yet to be widely applied in biology. This stems from a lack of demonstration of their sensitivity and compatibility with complex biological samples, and a lack of proof that their use does not induce aberrant cellular effects. Herein, we characterized and optimized a recently developed technology associating antibody microarrays with surface plasmon resonance imaging (SPRi). Using a murine macrophage cell line we demonstrate the binding specificity of our antibody-microarrays and the correlation between SPRi signals and both the number of bound cells, and the level of expression of cell surface markers. Confocal microscopy reveals that cell binding to the chip through antibody-antigen interactions underwent morphological changes reflecting the density of the relevant cell surface marker without affecting cell viability as shown by fluorescent microscopy. The detection threshold of the microarray-SPRi system is lowered 10-fold by applying a polyethylene oxide film to the gold surface of the chip. This increased sensitivity allows the detection of cells representing as little as 0.5% of a mixed population. The potential of this method is illustrated by two applications: characterization of ligand-cell receptor interactions, allowing determination of receptor specificity, and analysis of peripheral blood mononuclear cells, demonstrating the suitability of this tool for the analysis of complex biological samples.  相似文献   

5.
Recent proof-of-principle studies demonstrated the suitability of the surface plasmon resonance imaging (SPRi) technique for the detection of individual submicrometer and nanoparticles in solutions. In the current study, we used the SPRi technique for visualization of the binding of round-shaped viruses (inactivated influenza A virus) and virus-like particles (human immunodeficiency virus (HIV)-based virus-like particles) to the functionalized sensor surface. We show the applicability of the SPRi technique for the detection of individual virus-like particles in buffers without serum as well as in buffers containing different concentrations of serum. Furthermore, we prove the specificity of visualized binding events using two different pseudotypes of HIV virus-like particles. We also demonstrate the applicability of the SPRi technique for the determination of relative particle concentrations in solutions. Moreover, we suggest a technical approach, which allows enhancing the magnitude of binding signals. Our studies indicate that the SPRi technique represents an efficient research tool for quantification and characterization of biological submicrometer objects such as viruses or virus-like particles, for example.  相似文献   

6.
The ability to effectively monitor the behaviour of pluripotent stem cells and their differentiation is key to their use in basic and clinical research. Molecules expressed in particular cell types can be used to report the status of cell differentiation and is a recognised means of assessing the behaviour of cell cultures. There are currently few useful markers of stem cells and there is no rapid way to accurately determine their level of expression. In this study, we describe for the first time the potential of surface enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) to identify novel biomarkers of human pluripotent embryonal carcinoma stem cells and their differentiated derivatives. This approach allows the rapid and sensitive screening of cell samples without the need to purify the specimen prior to analysis. The identification of proteins expressed in specific cell populations will provide valuable tools for monitoring cellular development.  相似文献   

7.
Lo KY  Sun YS  Landry JP  Zhu X  Deng W 《BioTechniques》2011,50(6):381-388
Conventional fluorescence microscopy is routinely used to detect cell surface markers through fluorophore-conjugated antibodies. However, fluorophore-conjugation of antibodies alters binding properties such as strength and specificity of the antibody in often uncharacterized ways. Here we present a method using an oblique-incidence reflectivity difference (OI-RD) microscope for label-free, real-time detection of cell surface markers, and apply it to analysis of stage-specific embryonic antigen 1 (SSEA1) on stem cells. Mouse stem cells express SSEA1 on their surfaces, and the level of SSEA1 decreases when the cells start to differentiate. In this study, we immobilized mouse stem cells and non-stem cells (control) on a glass surface as a microarray and reacted the cell microarray with unlabeled SSEA1 antibodies. By monitoring the reaction with an OI-RD microscope in real time, we confirmed that the SSEA1 antibodies bind only to the surface of the stem cells and not to the surface of non-stem cells. From the binding curves, we determined the equilibrium dissociation constant (Kd) of the antibody with the SSEA1 markers on the stem cell surface. Thus, the OI-RD microscope can be used to detect binding affinities between cell surface markers and unlabeled antibodies bound to the cells; this information could be useful for determination of stem cell stages.  相似文献   

8.
We simulated, using Comsol Multiphysics, the excretion of antibodies by single hybridoma cells and their subsequent binding on a surface plasmon resonance imaging (SPRi) sensor. The purpose was to confirm that SPRi is suitable to accurately quantify antibody (anti-EpCAM) excretion. The model showed that antibody loss by diffusion away from the sensor was less than 1%. Unexpectedly, more than 99% of the excreted antibodies were captured on the sensor. These data prove the remarkable phenomenon that the SPRi output of cellular antibody excretion and its subsequent binding, performed under the conditions described here, is directly usable for quantification of single cell antibody production rates.  相似文献   

9.
Target-specific polymeric micelles loaded with fluorescence dye molecules in their hydrophobic cores were made from block copolymer of poly(caprolactones)23-b-poly(ethylene oxide)45. It was found that the micelles are stable against pH changes from pH 2 to 12 and temperature variation up to 65 degrees C. The dye molecules can be released to the solution on exposing the micelles to organic solvents or ultrasound. A rapid and highly sensitive immunoassay based on the above micelles was developed, and the assay can detect specific target proteins in the femtomolar range from complex biological samples such as serum mimics and cell lysate. For example, less than 0.15 U/ml of ovarian cancer-specific antigen 125, equivalent to 7.5 x 10(-15)M, can be reliably detected in solution. We also demonstrated that the assay can detect a cell surface biomarker, stage-specific embryonic antigen 4, from a single human embryonic stem cell.  相似文献   

10.
Lysate microarrays (reverse-phase protein arrays) hold great promise as a tool for systems-level investigations of signaling and multiplexed analyses of disease biomarkers. To date, however, widespread use of this technology has been limited by questions concerning data quality and the specificity of detection reagents. To address these concerns, we developed a strategy to identify high-quality reagents for use with lysate microarrays. In total, we tested 383 antibodies for their ability to quantify changes in protein abundance or modification in 20 biological contexts across 17 cell lines. Antibodies yielding significant differences in signal were further evaluated by immunoblotting and 82 passed our rigorous criteria. The large-scale data set from our screen revealed that cell fate decisions are encoded not just by the identities of proteins that are activated, but by differences in their signaling dynamics as well. Overall, our list of validated antibodies and associated protocols establish lysate microarrays as a robust tool for systems biology.  相似文献   

11.
The recent advances in microtechnologies have shown the interest of developing microarrays dedicated to cell analysis. In this way, miniaturized cell analyzing platforms use several detection techniques requiring specific solid supports for microarray read-out (colorimetric, fluorescent, electrochemical, acoustic, optical…). Real-time and label-free techniques, such as Surface Plasmon Resonance imaging (SPRi), arouse increasing interest for applications in miniaturized formats. Thus, we focused our study on chemical methods for antibody-based microarray fabrication dedicated to the SPRi analysis of cells or cellular activity. Three different approaches were designed and developed for specific applications. In the first case, a polypyrrole-based chemistry was used to array antibody-microarray for specific capture of whole living cells. In the second case, the polypyrrole-based chemistry was complexified in a three molecular level assembly using DNA and antibody conjugates to allow the specific release of cells after their capture. Finally, in the third case, a thiol-based chemistry was developed for long incubation times of biological samples of high complexity. This last approach was focused on the simultaneous study of both cell type characterization and secretory activity (detection of proteins secreted by cells). This paper describes three original methods allowing a rapid and efficient analysis of cellular sample on-chip using immunoaffinity-based assays.  相似文献   

12.
A surface plasmon resonance (SPR) imaging system was constructed and used to detect the hexahistidine-ubiquitin-tagged human parathyroid hormone fragment (His6-Ub-hPTHF(1–34)) expressed inEscherichia coli. The hexahistidine-specific antibody was immobilized on a thin gold film coated with ProLinkerTM B, a novel calixcrown derivative with a bifunctional coupling property that permits efficient immobilization of capture proteins on solid matrices. The soluble and insoluble fractions of anE. coli cell lysate were spotted onto the antibody-coated gold chip, which was then washed with buffer (pH 7.4) solution and dried. SPR imaging measurements were carried out to detect the expressed His6-Ub-hPTHF (1–34). There was no discernible protein image in the uninduced cell lysate, indicating that non-specific binding of contaminant proteins did not occur on the gold chip surface. It is expected that the approach used here to detect affinity-tagged recombinant proteins using an SPR imaging technique could be used as a powerful tool for the analyses of a number of proteins in a high-throughput mode.  相似文献   

13.
Surface plasmon resonance imaging (SPRi) is most frequently used for the label-free measurement of biomolecular interactions. Here we explore the potential of SPRi to measure antibody production of individual hybridoma cells. As a model system, cells from a hybridoma, producing monoclonal antibodies recognizing epithelial cell adhesion molecule (EpCAM), were used. Recombinant human EpCAM protein was immobilized on an SPR sensor and hybridoma cells were introduced into an IBIS MX96 SPR imager and the SPRi response was followed for 10 h. SPRi responses were detected on the spots of the sensor only where ligands of the produced antibody were present. By measuring the SPRi signals on individual cells the antibody production of the individual cells was measured and production rates were calculated. For 53 single EpCAM hybridoma cells the production ranged from 0.16 to 11.95 pg (mean 2.96 pg per cell, SD 2.51) over a period of 10 h. Antibody excretion per cell per hour ranged from 0.02 to 1.19 pg (mean 0.30, SD 0.25). Here we demonstrate for the first time that antibody production of individual cells can be measured and quantified by SPRi, opening a new avenue for measuring excretion products of individual cells.  相似文献   

14.
Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells—namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell—based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast. Based on our findings, the characteristic physical properties of specific stem cells can be quantitatively distinguished based on their refractive index and volume of cellular organelles. Altogether, the method employed herein could aid in the distinction of living stem cells from normal cells without the use of fluorescence or specific biomarkers.  相似文献   

15.
Nagano K  Yoshida Y  Isobe T 《Proteomics》2008,8(19):4025-4035
Embryonic stem cells (ESCs) can give rise to any adult cell type and thus offer enormous potential for regenerative medicine and drug discovery. Molecular biomarkers serve as valuable tools to classify and isolate ESCs and to monitor their differentiation state by antibody-based techniques. A number of biomarkers, such as certain cell surface antigens, are used to assign pluripotent ESCs; however, accumulating evidence suggests that ESCs are heterogeneous in morphology, phenotype and function, and are thereby classified into subpopulations characterized by multiple sets of molecular biomarkers. Biomarker discovery is also important for ESC biology to elucidate the molecular mechanisms that regulate pluripotency and differentiation. This review summarizes studies of ESC biomarker discovery. "Genome-wide" expression profiling of ESC mRNAs and proteins and direct analyses of the cell surface subproteome have demonstrated that ESCs express a diverse range of biomarkers, cell surface antigens, and signaling molecules found in different cell lineages, as well as a number of key molecules that assure "stemness". Clearly, future quantitative proteomics approaches will enhance our knowledge of the stage- and lineage-specific expression of the proteome and its temporal changes upon differentiation, and provide a more detailed view of nascent and clonally amplified ESCs.  相似文献   

16.
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) hold great potential for their therapeutic use in various clinical diseases. Many publications have reported on human blood-derived alternatives to animal serum for culturing mesenchymal stem cells, such as human serum, allogenic umbilical cord blood serum, and human platelet derivatives. However, it is not clear whether human umbilical cord blood plasma (UCBP), as the surplusage of umbilical cord blood mesenchymal stem cell extraction, could be used. In this study, in order to make the best of umbilical cord blood, the human UCBP was dialyzed to replace fetal bovine serum (FBS) in the culture medium. hUC-MSCs were cultured in the new medium. Cell growth rate, specific biomarkers, and differentiation properties were detected to characterize the cell proliferation and MSC-specific properties. The hUC-MSCs cultured in such derived medium were verified with proliferation rate, cluster differentiation markers, cell cycle, as well as differentiation capabilities. Such dialyzed human UCBP is fully comparable with, if not superior to, FBS in deriving and culturing hUC-MSCs.  相似文献   

17.
Surface plasmon resonance imaging (SPRi) is an intriguing technique for immunoassay with the inherent advantages of being high throughput, real time, and label free, but its sensitivity needs essential improvement for practical applications. Here, we report a dual signal amplification strategy using functional gold nanoparticles (AuNPs) followed by on-chip atom transfer radical polymerization (ATRP) for sensitive SPRi immunoassay of tumor biomarker in human serum. The AuNPs are grafted with an initiator of ATRP as well as a recognition antibody, where the antibody directs the specific binding of functional AuNPs onto the SPRi sensing surface to form immunocomplexes for first signal amplification and the initiator allows for on-chip ATRP of 2-hydroxyethyl methacrylate (HEMA) from the AuNPs to further enhance the SPRi signal. High sensitivity and broad dynamic range are achieved with this dual signal amplification strategy for detection of a model tumor marker, α-fetoprotein (AFP), in 10% human serum.  相似文献   

18.
The aim of this study was to establish an IMS-MS/SPR technique for the detection of Staphylococcus aureus (S. aureus) and Staphylococcus protein A (SPA) at the same time, which consists of isolating S. aureus and trapping-enrichmenting its SPA by IMS, and the end point is determined by using either MS or SPR measurements. Magnetic bead (MB) containing aldehyde group was synthesized with latex-polymerization and immunomagnetic bead (IMB) was fabricated by modifying its surface with an oriented layer of human IgG in covalent linkage. As soon as sample of pulverator-treated bacterial cell lysate (10(8) cfu/mL) was incubated with IMB at 4 degrees C for 30 min, SPA was captured and separated from the mixed solution in a few minutes by the IMB and then detected with mass spectrometry after washing. SPR was used to detect S. aureus quantitatively in situ at the end-detection procedure. All in all, this technique can be employed to detect rapidly SPA and S. aureus within 2h and also be applied to detect other cells or their membrane proteins with changed modified antibodies.  相似文献   

19.
Summary This paper describes use of a novel substituted melanin which is useful in detection of differentiating leukemia cells and their membranes. Comparisons of luminol-(5-amino-2,3-dihydro-1,4-phthalazinedione) and diazoluminomelanin (DALM)-mediated chemiluminescence (CL) were made with various types of differentiated and undifferentiated HL-60 whole cells, cell lysates, and membrane fractions. Luminol had a greater CL response than DALM with HL-60 promyelocytic stem cells and differentiated macrophage-like or neutrophil-like whole cell and cell lysate preparations. However, DALM showed markedly greater CL than luminol for membrane fractions derived from each cell type. The greatest luminol-dependent CL was observed for cell types high in myeloperoxidase (MPO). The greatest DALM-mediated CL was seen with cell types that are high in MPO or strong producers of superoxide (O2-) anions. In some cases, significant differences in CL could also be distinguished on the basis of inducing agent used [i.e. dimethylsulfoxide, all-trans retinoic acid or 12-o-tetradecanoylphorbol-13-acetate]. Both luminol- and DALM-dependent CL were strongly inhibited by preincubation of cellular preparations with 3-amino-l-tyrosine (a component of DALM). Taken together, these data suggest that the reaction mechanism of luminol favors interaction with cytoplasmic MPO whereas that of DALM favors membrane interactions. Thus, both reagents may be of use in assays to detect differentiating leukocytes or their cellular components.  相似文献   

20.
The presence of senile plaques composed of amyloid-beta (Abeta) polypeptides within brain tissue is normally used as a definitive postmortem diagnosis for Alzheimer's Disease (AD). Therefore, these polypeptides have been investigated as potential biomarkers of the disease state. However, at present, there is a lack of a robust assay for the detection of such polypeptides derived from in vivo sources. Such an assay is essential for analysis of biological samples from model AD systems. To overcome this problem we have developed a new single-step assay utilizing two dimensional-chromatography in conjunction with mass spectrometry. The method consists of on-line size-exclusion chromatography (SEC) to provide initial separation of analytes from the sample (based on their molecular weight) coupled with sample preconcentration prior to analysis by microbore high-performance liquid chromatography-mass spectrometry (HPLC-MS). This provides an extremely versatile and powerful assay which can separate specific analytes from cell lysate in a single step without further sample handling. The use of mass spectrometry as the detection system yields much more structural information than can be obtained from traditional ELISA and sandwich ELISA antibody assays. Furthermore, the on-line sample cleanup protocol minimizes sample handling and facilitates assay automation. Utilizing this new assay we have been able to detect Abeta 1-40 and Abeta 1-42 at cellular concentration levels directly from cell lysates. Moreover, we have detected multiple peptide responses within the same analysis, some of which have been tentatively identified as other ragged C-termini Abeta polypeptides derived from Abeta 1-42, based on their molecular weight, as well as oxidized Abeta polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号