首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An elevated circulating level of the adipocyte-derived satiety hormone leptin is an independent risk factor for cardiovascular disease. Because thrombus formation is a major cause of acute coronary events and leptin was shown previously to facilitate ADP-induced platelet aggregation, we chose to define the signaling events involved in leptin-mediated platelet activation. Using pharmacological, biochemical, and cell biological approaches, we show that leptin-induced platelet activation required activation of a signaling cascade that included the long form of the leptin receptor, three kinases [Janus kinase 2 (JAK2), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (PKB/Akt)], the insulin receptor substrate-1 (IRS-1), and the major human platelet cAMP phosphodiesterase phosphodiesterase 3A (PDE3A). Moreover, we identify a role for an intraplatelet LEPR/JAK2/IRS-1/PI3K/PKB/PDE3A molecular complex that allows for the selective leptin-mediated activation of platelets. Our data demonstrate that leptin promotes platelet activation, provides a mechanistic basis for the prothrombotic effect of this hormone, and identifies a potentially novel therapeutic avenue to limit obesity-associated cardiovascular disease.  相似文献   

2.
We have previously shown that cAMP protects against bile acid-induced apoptosis in cultured rat hepatocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. In the present studies, we investigated the mechanisms involved in this anti-apoptotic effect. Hepatocyte apoptosis induced by glycodeoxycholate (GCDC) was associated with mitochondrial depolarization, activation of caspases, the release of cytochrome c from the mitochondria, and translocation of BAX from the cytosol to the mitochondria. cAMP inhibited GCDC-induced apoptosis, caspase 3 and caspase 9 activation, and cytochrome c release in a PI3K-dependent manner. cAMP activated PI3K in p85 immunoprecipitates and resulted in PI3K-dependent activation of the survival kinase Akt. Chemical inhibition of Akt phosphorylation with SB-203580 partially blocked the protective effect of cAMP. cAMP resulted in wortmannin-independent phosphorylation of BAD and was associated with translocation of BAD from the mitochondria to the cytosol. These results suggest that GCDC-induced apoptosis in cultured rat hepatocytes proceeds through a caspase-dependent intracellular stress pathway and that the survival effect of cAMP is mediated in part by PI3K-dependent Akt activation at the level of the mitochondria.  相似文献   

3.
Intracellular signaling mediated by phosphatidylinositol 3-kinase (PI3K) is important for a number of cellular processes and is stimulated by a variety of hormones, including insulin and leptin. A histochemical method for assessment of PI3K signaling would be an important advance in identifying specific cells in histologically complex organs that are regulated by growth factors and peptide hormones. However, current methods for detecting PI3K activity require either homogenization of the tissue or cells or the ability to transfect probes that bind to phosphatidylinositol 3,4,5 trisphosphate (PIP3), the reaction product of PI3K catalysis. Here we report the validation of an immunocytochemical method to detect changes in PI3K activity, using a recently developed monoclonal antibody to PIP3, in paraformaldehyde-fixed bovine aortic endothelial cells (BAECs) in culture and in hepatocytes of intact rat liver. Treatment with either insulin or leptin increased BAEC PIP3 immunoreactivity, and these effects were blocked by pretreatment with PI3K inhibitors. Furthermore, infusion of insulin into the hepatic portal vein of fasted rats caused an increase of PIP3 immunostaining in hepatocytes that was associated with increased serine phosphorylation of the downstream signaling molecule protein kinase B/Akt (PKB/Akt). We conclude that immunocytochemical PIP3 staining can detect changes in PI3K activation induced by insulin and leptin in cell culture and intact liver.  相似文献   

4.
5.
Cyclic AMP stimulates taurocholate (TC) uptake and sodium taurocholate co-transporting polypeptide (Ntcp) translocation in hepatocytes via the phosphoinositide-3 kinase (PI3K) signaling pathway. The aim of the present study was to determine whether protein kinase (PK) Czeta, one of the downstream mediators of the PI3K signaling pathway, is involved in cAMP-mediated stimulation of TC uptake. Studies were conducted in isolated rat hepatocytes and in HuH-7 cells stably transfected with rat liver Ntcp (HuH-Ntcp cells). Studies in hepatocytes showed that cAMP activates PKCzeta in a PI3K-dependent manner without inducing translocation of PKCzeta to the plasma membrane. Inhibition of cAMP-induced PKCzeta activity by myristoylated PKC (zeta/lambda) pseudosubstrate, a specific inhibitor of PKCzeta, and G? 6850, a PKC inhibitor, resulted in inhibition of cAMP-induced increases in TC uptake and Ntcp translocation. Studies in HuH-Ntcp cells showed that inhibition of cAMP-induced PKCzeta activation by dominant-negative (DN) PKCzeta resulted in inhibition of cAMP-induced increases in TC uptake and Ntcp translocation. DN PKCzeta also inhibited wild-type PKCzeta-induced increases in PKCzeta activity, TC uptake, and Ntcp translocation. Myristoylated PKC (zeta/lambda) pseudosubstrate and DN PKCzeta also inhibited cAMP-induced activation of PKB in hepatocytes and HuH-Ntcp cells, respectively. Neither DN PKB nor constitutively active PKB affected cAMP-induced activation of PKCzeta, and wild-type PKCzeta did not activate PKB. Taken together, these results suggest that cAMP-induced activation of PKB is dependent on cAMP-induced stimulation of PKCzeta. It is proposed that cAMP-induced Ntcp translocation involves the activation of the PI3K/PKCzeta signaling pathway followed by the activation of the PI3K/PKB signaling pathway.  相似文献   

6.
Leptin and insulin have overlapping intracellular signaling mechanisms and exert anorexigenic actions in the hypothalamus. We aimed to determine how chronic exposure to increased leptin affects the hypothalamic response to a rise in insulin. We analyzed the activation and interactions of components of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the hypothalamus of rats treated icv for 14 days with leptin followed by a central injection of insulin and killed 15 min later. Insulin increased glycemia and chronic leptin reduced this insulin induced rise in glucose. Leptin decreased the association between the insulin receptor beta chain (IRβ) and insulin receptor substrate 2 (IRS2), augmented the association between Janus kinase 2 and IRS2, increased levels of the catalytic subunit of PI3K and pAkt-Ser473 and decreased forkhead box O number 1 levels. Insulin reduced the association between suppressor of the cytokine signaling 3 and IRβ, increased IRβ-IRS2 association and pAkt-Thr308 levels, with chronic leptin exposure blunting these effects. In conclusion, chronic exposure to leptin decreases the central response to insulin by increasing suppressor of the cytokine signaling 3 association to IR, which inhibits insulin signaling at the level of interaction of its receptor with IRS2 and activates PI3K by promoting Janus kinase 2-IRS2 association. Thus, these results suggest that this mechanism could be a target for the treatment of insulin resistance.  相似文献   

7.
Antagonism of voltage-dependent K+ (Kv) currents in pancreatic beta-cells may contribute to the ability of glucagon-like peptide-1 (GLP-1) to stimulate insulin secretion. The mechanism and signaling pathway regulating these currents in rat beta-cells were investigated using the GLP-1 receptor agonist exendin 4. Inhibition of Kv currents resulted from a 20-mV leftward shift in the voltage dependence of steady-state inactivation. Blocking cAMP or protein kinase A (PKA) signaling (Rp-cAMP and H-89, respectively) prevented the inhibition of currents by exendin 4. However, direct activation of this pathway alone by intracellular dialysis of cAMP or the PKA catalytic subunit (cPKA) could not inhibit currents, implicating a role for alternative signaling pathways. A number of phosphorylation sites associated with phosphatidylinositol 3 (PI3)-kinase activation were up-regulated in GLP-1-treated MIN6 insulinoma cells, and the PI3 kinase inhibitor wortmannin could prevent antagonism of beta-cell currents by exendin 4. Antagonists of Src family kinases (PP1) and the epidermal growth factor (EGF) receptor (AG1478) also prevented current inhibition by exendin 4, demonstrating a role for Src kinase-mediated trans-activation of the EGF tyrosine kinase receptor. Accordingly, the EGF receptor agonist betacellulin could replicate the effects of exendin 4 in the presence of elevated intracellular cAMP. Downstream, the PKCzeta pseudosubstrate inhibitor could prevent current inhibition by exendin 4. Therefore, antagonism of beta-cell Kv currents by GLP-1 receptor activation requires both cAMP/PKA and PI3 kinase/PKCzeta signaling via trans-activation of the EGF receptor. This represents a novel dual pathway for the control of Kv currents by G protein-coupled receptors.  相似文献   

8.
Integrins regulate cell viability through their interaction with the extracellular matrix. Integrins can sense mechanical forces arising from the matrix and convert these stimuli to chemical signals capable of modulating intracellular signal transduction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is a major regulator of cell survival. It is not known, however, whether integrins, acting as mechanoreceptors, regulate cell survival via the PI3K/Akt pathway. Here, we show that in response to a matrix-derived mechanical stimulus, beta1 integrin regulated cell viability by regulating Akt activity in a PI3K-dependent fashion. To accomplish this, we employed fibroblasts cultured in collagen gels. During contraction of collagen matrices, fibroblasts underwent apoptosis. We demonstrate that ligation of beta1 integrin with anti-beta1 integrin antibodies protected fibroblasts from apoptosis. The nature of the survival signal activated by beta1 integrin engagement with antibody was mediated by PI3K acting through Akt/protein kinase B. We show that Akt phosphorylation decreased during collagen contraction and that this decrease correlated precisely with the onset of fibroblast apoptosis. Fibroblasts transfected with constitutively active PI3K displayed increased Akt phosphorylation and were protected from anoikis and collagen gel contraction-induced apoptosis. Our data identify a novel role for beta1 integrin in regulating fibroblast viability through a PI3K/Akt/protein kinase B signaling pathway in response to a matrix-derived mechanical stimulus.  相似文献   

9.
We have recently demonstrated that the D3-phosphoinositide phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P(3)) is critical for producing sustained calcium signals through its role in promoting the function of TEC family tyrosine kinases such as Bruton's tyrosine kinase. Although PtdIns-3,4,5-P(3) can potentially be synthesized by any of several types of phosphoinositide 3-kinases (PI3Ks), B cell receptor (BCR)-induced PtdIns-3,4,5-P(3) production is thought to occur primarily through the activation of the class Ia (p85/p110) PI3Ks. This process has been proposed to be mediated by an interaction between the Src family kinase LYN and the p85 subunit of PI3K and/or through p85 membrane recruitment mediated by CBL and/or CD19. However, calcium signaling and other PI3K-dependent signals are relatively preserved in a LYN kinase-deficient B lymphocyte cell line, suggesting that an alternative pathway for PI3K activation exists. As SYK/ZAP70 kinases are upstream from many BCR-initiated signaling events, we directly analyzed SYK-dependent accumulation of both PtdIns-3,4,5-P(3) and PtdIns-3,4-P(2) in B cell receptor signaling using both dominant negative and genetic knockout approaches. Both methods indicate that SYK is upstream of, and necessary for, a significant portion of BCR-induced PtdIns-3,4, 5-P(3) production. Whereas CD19 does not appear to be involved in this SYK-dependent pathway, the SYK substrate CBL is likely involved as the dominant negative SYK markedly attenuates CBL tyrosine phosphorylation and completely blocks the BCR-dependent association of CBL with p85 PI3K.  相似文献   

10.
11.
Cell swelling stimulates phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) in hepatocytes, and the PI3K signaling pathway is involved in cAMP-mediated translocation of sinusoidal Na(+)/taurocholate (TC) cotransporter (Ntcp) to the plasma membrane. We determined whether cell swelling also stimulates TC uptake and Ntcp translocation via the PI3K and/or MAPK signaling pathway. All studies were conducted in isolated rat hepatocytes. Hepatocyte swelling induced by hypotonic media resulted in: 1) time- and medium osmolarity-dependent increases in TC uptake, 2) an increase in the V(max) of Na(+)/TC cotransport, and 3) wortmannin-sensitive increases in TC uptake and plasma membrane Ntcp mass. Hepatocyte swelling also induced wortmannin-sensitive activation of PI3K, protein kinase B, and p70(S6K). Rapamycin, an inhibitor of p70(S6K), inhibited cell swelling-induced activation of p70(S6K) but failed to inhibit cell swelling-induced stimulation of TC uptake. Because PD98095, an inhibitor of MAPK, did not inhibit cell swelling-induced increases in TC uptake, it is unlikely that the effect of cell swelling on TC uptake is mediated via the MAPK signaling pathway. Taken together, these results indicate that 1) cell swelling stimulates TC uptake by translocating Ntcp to the plasma membrane, 2) this effect is mediated via the PI3K, but not MAPK, signaling pathway, and 3) protein kinase B, but not p70(S6K), is a likely downstream effector of PI3K.  相似文献   

12.
Leptin communicates the status of body energy stores to the central nervous system, regulating appetite, metabolic rate, and neuroendocrine functions. These effects are mediated by leptin binding and activation of the cognate cell surface receptor, a member of type I cytokine receptor family, which lead to the activation of receptor-associated kinases of the Janus family. In this work, we demonstrate that leptin inhibits the l-alpha-lysophosphatidic acid (LPA)-induced intracellular calcium mobilization in a dose-dependent manner in HEK-293 cells stably expressing full-length leptin receptor (OB-Rb). This action appears to be selective, as it was not observed when other signaling families, such as VIP or EGF, were studied. Pretreatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, reversed the effect of leptin, pointing to PI3K as an intermediate molecule involved in this process. An unspecific protein kinase C (PKC) inhibitor, staurosporine, disrupted the inhibitory action of leptin. Furthermore, intracellular levels of phosphorylated PKCepsilon and PKCdelta rose to a maximum 5 min after leptin administration, suggesting that these atypical PKC isoforms are involved in the observed cross-desensitization. To define the regions of the OB-Rb intracellular domain required for the cross-desensitization, a series of C-terminal deletion mutants were transfected into HEK-293 cells. C-terminal truncation that removed the consensus Box 3 motif of OB-Rb prevented leptin action, indicating that heterologous desensitization over LPA was exerted at the level of this intracellular motif. Our date demonstrate that leptin plays a key role in the regulation of the earliest signaling pathways activated by growth factors, such as LPA, through a signaling pathway involving PKCdelta and PKCepsilon coupled to Box 3 motif of the OB-Rb through PI3K.  相似文献   

13.
The acylated peptide ghrelin (AG) and its endogenous non-acylated isoform (UAG) protect cardiomyocytes, pancreatic β-cells, and preadipocytes from apoptosis, and induce preadipocytes differentiation into adipocytes. These events are mediated by AG and UAG binding to a still unidentified receptor, which determines the activation of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) ERK1/2. AG and UAG also possess antilipolytic activity in vitro, but the underlying mechanism remains unknown. Thus, the objective of the current study was to characterize the molecular events involved in AG/UAG receptor signaling cascade. We treated rat primary visceral adipocytes with isoproterenol (ISO) and forskolin (FSK) to stimulate lipolysis, simultaneously incubating them with or without AG or UAG. Both peptides blocked ISO- and FSK-induced lipolysis. By direct measurement of cAMP intracellular content, we demonstrated that AG/UAG effect was associated to a reduction of ISO-induced cAMP accumulation. Moreover, the cAMP analog 8Br-cAMP abolished AG/UAG effect. As AG and UAG were ineffective against lipolysis induced by db-cAMP, another poorly hydrolyzable cAMP analog, phosphodiesterase (PDE) involvement was hypothesized. Indeed, cilostamide, a specific PDE3B inhibitor, blocked AG/UAG effect on ISO-induced lipolysis. Furthermore, the PI3K inhibitor wortmannin and AKT inhibitor 1,3-dihydro-1-(1-((4-(6-phenyl-1H-imidazo(4,5-g)quinoxalin-7-yl)phenyl)methyl)-4piperidinyl)-2H-benzimidazol-2-one trifluoroacetate also blocked AG/UAG action, suggesting a role in PDE3B activation. In particular, PI3K isoenzyme gamma (PI3Kγ) selective inhibition through the compound AS605240 prevented AG/UAG effect on ISO-stimulated lipolysis, hampering AKT phosphorylation on Ser(473). Taken together, these data demonstrate for the first time that AG/UAG attenuation of ISO-induced lipolysis involves PI3Kγ/AKT and PDE3B.  相似文献   

14.
Cong L  Chen K  Li J  Gao P  Li Q  Mi S  Wu X  Zhao AZ 《The Biochemical journal》2007,403(3):519-525
Adiponectin is intimately involved in the regulation of insulin sensitivity, carbohydrate and lipid metabolism, and cardiovascular functions. The circulating concentration of adiponectin is decreased in obesity and Type 2 diabetes. The present study attempts to elucidate the mechanisms underlying the regulation of adiponectin secretion and expression in rat primary adipocytes. The beta-agonist, isoprenaline, decreased adiponectin secretion and expression in a dose-dependent manner in primary adipocytes. Importantly, such an inhibitory effect could be blocked by insulin. The opposing effects of isoprenaline and insulin could be explained by differential regulation of intracellular cAMP levels, since cAMP analogues suppressed adiponectin secretion and expression in a fashion similar to isoprenaline, and insulin blocked the inhibitory effects of the cAMP analogue hydrolysable by PDE (phosphodiesterase). A specific PDE3 inhibitor, milrinone, and PI3K (phosphoinositide 3-kinase) inhibitors abolished the effects of insulin on adiponectin secretion and expression. In the same studies, leptin secretion and expression displayed a similar pattern of regulation to adiponectin. We conclude that insulin and beta-agonists act directly at the adipocytes in opposing fashions to regulate the production of adiponectin and leptin, and that a PI3K-PDE3B-cAMP pathway mediates the effects of insulin to restore beta-agonist/cAMP-suppressed secretion and expression of these two adipokines.  相似文献   

15.
The small GTP-binding protein Rap1B is activated in human platelets upon stimulation of a G(i)-dependent signaling pathway. In this work, we found that inhibition of platelet adenylyl cyclase by dideoxyadenosine or SQ22536 did not cause activation of Rap1B and did not restore Rap1B activation in platelets stimulated by cross-linking of Fcgamma receptor IIA (FcgammaRIIA) in the presence of ADP scavengers. Moreover, elevation of the intracellular cAMP concentration did not impair the G(i)-dependent activation of Rap1B. Two unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, totally prevented Rap1B activation in platelets stimulated by cross-linking of FcgammaRIIA, by stimulation of the P2Y(12) receptor for ADP, or by epinephrine. However, in platelets from PI3Kgamma-deficient mice, both ADP and epinephrine were still able to normally stimulate Rap1B activation through a PI3K-dependent mechanism, suggesting the involvement of a different isoform of the enzyme. Moreover, the lack of PI3Kgamma did not prevent the ability of epinephrine to potentiate platelet aggregation through a G(i)-dependent pathway. The inhibitory effect of wortmannin on Rap1B activation was overcome by addition of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), but not PtdIns(3,4)P(2), although both lipids were found to support phosphorylation of Akt. Moreover, PtdIns(3,4,5)P(3) was able to relieve the inhibitory effect of apyrase on FcgammaRIIA-mediated platelet aggregation. We conclude that stimulation of a G(i)-dependent signaling pathway causes activation of the small GTPase Rap1B through the action of the PI3K product PtdIns(3,4,5)P(3), but not PtdIns(3,4)P(2), and that this process may contribute to potentiation of platelet aggregation.  相似文献   

16.
Insulin-like growth factor-1 (IGF-1) and brain-derived neurotrophic factor (BDNF) are trophic factors required for the viability and normal functions of various neuronal cells. However, the detailed intracellular mechanism(s) involved in these effects in neuronal cells remains to be fully elucidated. In present study, the respective intracellular signaling pathway induced by IGF-1 and BDNF and their possible role in neuronal survival were investigated. Both IGF-1 and BDNF protected hippocampal neurons from serum deprivation-induced death with IGF-1 apparently being more potent. Western blot analyses showed that both IGF-1 and BDNF induced the activation of the phosphatidylinositide 3 kinase (PI3)/Akt (protein kinase B) kinase and the mitogen-activated protein kinase (MAPK) pathways. The phosphorylation of Akt and its downstream target, FKHRL1, induced by IGF-1 was rapid and sustained while that of MAPK was transient. The reverse situation was observed for BDNF. Moreover, IGF-1 potently induced the tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and its association with PI3 kinase while BDNF was weak in these assays. In contrast, the tyrosine phosphorylation of Shc proteins was dramatically stimulated by BDNF, with IGF-1 having only a minimal effect. Most interestingly, only the inhibitor of the PI3K/Akt pathway, LY294002, was able to block the survival effects of both IGF-1 and BDNF; an inhibitor of the MAPK pathway inhibitor, PD98059, being ineffective. Taken together, these data reveal that the survival properties of both IGF-1 and BDNF against serum deprivation are mediated by the activation of the PI3K/Akt, but not the MAPK, pathway in hippocampal neurons.  相似文献   

17.
Hepatic overproduction of apolipoprotein B (apoB)-containing lipoproteins is characteristic of the dyslipidemia associated with insulin resistance. Recently, we demonstrated that the flavonoid naringenin, like insulin, decreased apoB secretion from HepG2 cells by activation of both the phosphoinositide-3-kinase (PI3-K) pathway and the mitogen-activated protein kinase/extracellular-regulated kinase (MAPK(erk)) pathway. In the present study, we determined whether naringenin-induced signaling required the insulin receptor (IR) and sensitized the cell to the effects of insulin, and whether the kinetics of apoB assembly and secretion in cells exposed to naringenin were similar to those of insulin. Immunoblot analysis revealed that insulin stimulated maximal phosphorylation of IR and IR substrate-1 after 10 min, whereas naringenin did not affect either at any time point up to 60 min. The combination of naringenin and submaximal concentrations of insulin potentiated extracellular-regulated kinase 1/2 activation and enhanced upregulation of the LDL receptor, downregulation of microsomal triglyceride transfer protein expression, and inhibition of apoB-100 secretion. Multicompartmental modeling of apoB pulse-chase studies revealed that attenuation of secreted radiolabeled apoB in naringenin- or insulin-treated cells was similar under lipoprotein-deficient or oleate-stimulated conditions. Naringenin and insulin both stimulated intracellular apoB degradation via a kinetically defined rapid pathway. Therefore, naringenin, like insulin, inhibits apoB secretion through activation of both PI3-K and MAPK(erk) signaling, resulting in similar kinetics of apoB secretion. However, the mechanism for naringenin-induced signaling is independent of the IR. Naringenin represents a possible strategy for reduction of hepatic apoB secretion, particularly in the setting of insulin resistance.  相似文献   

18.
Key pathways like insulin signaling, AMP activated kinase (AMPK) activation and inflammatory signaling are involved in the complex pathological network of hepatic insulin resistance. Our aim is to investigate whether grape seed proanthocyanidins (GSP) and metformin (MET) target any of these pathways in insulin resistant rat liver. Albino Wistar rats were rendered insulin resistant by feeding a high fat-fructose diet (HFFD). Either GSP (100 mg/kg b.w), MET(50 mg/kg b.w) or both were administered to insulin resistant rats as therapeutic options. HFFD-feeding caused hyperglycemia, hyperinsulinemia, increased gluconeogenesis, decreased tyrosine phosphorylation of insulin receptor-β(IR-β) and insulin receptor substrate-1 (IRS-1) and increased serine phosphorylation of IRS-1. The association of p85α subunit of phosphotidyl inositol 3 kinase(PI3K) with IRS-1 and subsequent Akt phosphorylation were reduced while the expression of mitogen activated protein kinases (MAPK) were increased in HFFD rats. Both MET and GSP reduced hyperglycemia and hyperinsulinemia and improved glycolysis, tyrosine phosphorylation of IR-β and IRS-1, IRS-1-PI3K association and Akt activation. However, activation of tumor necrosis factor-α, interleukin-6, leptin and suppressor of cytokine signaling-3 and reduction in adiponectin caused by chronic HFFD feeding were reversed by GSP better than by MET. Activation of AMPK by GSP was much less compared to that by MET. These findings suggest that GSP might activate PI3K pathway and promote insulin action by reducing serine kinase activation and cytokine signaling and MET by targeting AMPK. The beneficial effects were enhanced during combination therapy. Thus, combination therapy with MET and GSP may be considered for the management of metabolic syndrome.  相似文献   

19.
20.
To investigate the role of brain insulin action in the pathogenesis and treatment of diabetes, we asked whether neuronal insulin signaling is required for glucose-lowering during insulin treatment of diabetes. Hypothalamic signaling via the insulin receptor substrate-phosphatidylinositol 3-kinase (IRS-PI3K) pathway, a key intracellular mediator of insulin action, was reduced in rats with uncontrolled diabetes induced by streptozotocin (STZ-DM). Further, infusion of a PI3K inhibitor into the third cerebral ventricle of STZ-DM rats prior to peripheral insulin injection attenuated insulin-induced glucose lowering by approximately 35%-40% in both acute and chronic insulin treatment paradigms. Conversely, increased PI3K signaling induced by hypothalamic overexpression of either IRS-2 or protein kinase B (PKB, a key downstream mediator of PI3K action) enhanced the glycemic response to insulin by approximately 2-fold in STZ-DM rats. We conclude that hypothalamic insulin signaling via the IRS-PI3K pathway is a key determinant of the response to insulin in the management of uncontrolled diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号