首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
Plasma dopamine: regulation and significance   总被引:4,自引:0,他引:4  
Dopamine (DA) normally circulates in plasma. The plasma concentration of the free form of DA is approximately equivalent to that of epinephrine (E) and 20% that of norepinephrine (NE). The free form constitutes less than 2% of total plasma DA, and the remainder exists predominantly as sulfate or glucuronide conjugates. DA is found in adrenal medulla and cortex, peripheral nerves, sympathetic ganglia, carotid body, and kidney, but quantitatively the origin of circulating DA remains poorly understood. Plasma concentrations of free DA increase in association with events that increase sympathetic tone, although to a much lesser degree than seen for NE or E. Thus, upright posture, bicycle exercise, a variety of emotional and physical stresses, and hypoglycemia may be associated with increases in plasma free DA. Plasma DA decreases during the course of dietary sodium depletion in humans, in contrast to the plasma NE response, and consistent with a physiological role for DA in the regulation of aldosterone secretion. Plasma DA increases after administration of its precursor L-dihydroxyphenylalanine, together with the decarboxylase inhibitor carbidopa. Plasma NE and (in some studies) plasma DA decrease after administration of the DA receptor agonist bromocriptine. In contrast, plasma DA and one of its major metabolites, homovanillic acid, increase after administration of the DA receptor antagonist haloperidol. Administration of the endogenous opioid peptide beta-endorphin into the brain increases central sympathetic outflow, thus increasing plasma DA concentration, although to a lesser extent than for NE or E. Disordered basal concentrations of DA in plasma or disordered responses of plasma DA have been reported in a number of disease states. Clear understanding of physiological roles of DA in plasma and of its pathophysiology awaits definition.  相似文献   

2.
The formation and excretion of conjugated catecholamines (CA) was studied in conscious rats after sympathetic stimulation by hypoxia (5.5-6% O2, 4 h). Hypoxia induced a rapid and intense increase of free epinephrine (E, X 12) and norepinephrine (NE, X 6) but only a limited enhancement of free dopamine (DA, X 2). Sulfate conjugates of E and NE had kinetics similar to the free forms, while glucuronides were only moderately and lately altered. In contrast to free and sulfated DA, DA glucuronide, the major plasma conjugate, was decreased (-25%). This result suggests that DA glucuronide, unlike other CA conjugates, is not related to detoxication but might supply a CA precursor. Urinary conjugates badly reflected plasma conjugates. In normoxic controls, CA conjugates prevailed in the plasma, whereas the free amines prevailed in the urine. Hypoxia increased mainly the excretion of E and NE glucuronide but not of the free amines. Urinary DA, free or conjugated, was decreased (-25%), a result in keeping with plasma DA glucuronide only. The poor relations between plasma and urine catecholamines pinpoint the importance of the kidney in CA handling.  相似文献   

3.
Catecholamine and metabolite excretion was studied in the cat after 6 h of 7.5% O2 hypoxia. Norepinephrine (NE) release from sympathetic nervous endings was strongly activated, whereas epinephrine (E) excretion was only slightly increased. A noteworthy result was the increase of dopamine (DA) and its metabolites [3-methoxytyramine (MT); 3,4-dihydroxyphenylacetic acid (DOPAC)] in urine samples. This increased release does not seem to originate from the central nervous system, but rather from peripheral dopaminergic structures; available knowledge on peripheral DA suggests that the hypoxia-induced DA release might be partly related to chemosensory or renal function. Indeed, in addition to enhanced DA and NE excretion, we observed an increase in sodium excretion that correlated with both DA and NE. Analysis of free and conjugated urinary metabolites showed that only free NE and both free and conjugated normetanephrine were increased in urine after hypoxic stress. Among DA metabolites, conjugated DOPAC was the main DA metabolite in the basal state and after hypoxia. Both the free and the conjugated forms of DA, MT, and DOPAC were increased by hypoxia.  相似文献   

4.
We have measured, by a specific radioenzymoassay, the plasma concentration of dopamine (DA) and norepinephrine (NE) and by gas chromatography the urinary excretion of some catecholamine metabolites (HVA, homovanillic acid, DOPAC, dihydroxyphenyl acetic acid; VMA, vanilmandelic acid, and DOPEG, dihydroxyphenyl glycol) in three groups of rats with portal hypertension: cirrhotic rats (CR), rats with progressive portal hypertension (PPH) and rats with progressive hepatic congestion (PHC). The three groups of rats had portal hypertension. PPH and PHC had also intrahepatic hypertension. CR rats showed an increased urinary excretion of NE and DA metabolites with a normal plasma concentration of these catecholamines, suggesting an increased turnover of NE and DA in this experimental model. PPH animals had a high plasma DA concentration with a decreased urinary excretion of catecholamine metabolites. PHC showed high plasma DA and NE levels with normal or increased urinary excretion of its metabolites. These results suggest that an increased neural activity is present in the early stages of experimental cirrhosis in rats and this alteration does not seem directly related to the portal hypertension but perhaps to the intrahepatic hypertension or to the hepatocellular damage.  相似文献   

5.
To elucidate catecholamine (CA) secretory dynamics in neuroblastoma, urinary excretion of CAs and their metabolites was serially measured in 6 patients aged 3 months to 3 years before and during treatment. After tumor extirpation, increased urinary CAs were promptly normalized; the reduction reflected the amount of CA production from the tumor. Urinary dopamine (DA) showed the most prominent reduction, whereas DA content in the tumor was very small, indicating that the DA produced was immediately released from the tumor and metabolized in extra-tumor tissues. In contrast, patients receiving chemotherapy continued to excrete excess DA and homovanillic acid (HVA), which were increased further at recidivation. One patient showed an inverse correlation between DA and norepinephrine (NE) excretion; a decrease in DA was associated with an increase in NE and plasma DA-beta-hydroxylase (DBH) activity. A similar inverse correlation was also noted between NE and vanillylmandelic acid (VMA) or 3-methoxy-4-hydroxyphenylglycol (MHPG) excretion, while HVA and dihydroxyphenylacetic acid (DOPAC) were positively correlated with DA excretion. Urinary HVA and VMA were lineally correlated but in a patient excreting an enormous amount of DA, urinary VMA was markedly suppressed in terms of HVA excretion. Excessive DA induced an increase in renal water output but did not enhance Na and K excretion. These results indicate that endogenous DA overload in neuroblastoma inhibits NE production by suppressing DBH activity as well as by forming VMA and MHPG. This precursor regulation appears to be the characteristic of the CA metabolic pathway.  相似文献   

6.
Abstract: Dopamine (DA) and its metabolites, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC), have been measured in peripheral tissues of the rat and human by gas chromatography-mass spectrometry. The content of HVA and DOPAC in peripheral tissue is higher than in blood and is usually higher than the content of DA. In the rat, chemical denervation with 6-hydroxydopamine decreased the tissue content of DOPAC. inhibition of monoamine oxidase increased tissue DA. Apparently, in vivo , a large quantity of peripheral DA is catabolized rather than converted to norepinephrine (NE). These observations suggest that either NE synthesis is inefficient, with a large quantity of DA wasted and not converted to NE, or that DA is physiologically utilized as a neurotransmitter and/or cotransmitter in many peripheral nerves. A survey of the reported actions of DA on peripheral tissues suggests that the latter proposal is more likely.  相似文献   

7.
K Mori 《Life sciences》1987,41(7):901-904
The techniques of pre- and post-column reactions in HPLC with fluorimetric detection for catecholamines (CAs) were described. The post-column reactor based on trishydroxyindole formation have frequently used in the routine analysis of CAs. The fluorescence intensity of the derivative dopamine (DA) at 520 nm (with exitation at 410 nm) is weaker than that of the norepinephrine (NE) and epinephrine (E) derivatives. Although urinary DA can be detected by using this method, its detection in plasma is difficult. Recently a new pre-column derivatization method using 1,2-diphenylethylenediamine (DPE) was found in Ohkura's laboratory. After the clean-up using a cation-exchange column, CAs were converted into the fluorescent compounds by reaction with DPE. The limites of detection for NE, E and DA were about 2 fmol at a signal-to-noise ratio of 2. DA in plasma can be determined by this method. A modified THI technique with electrochemical oxidation was examined. The above methods are very sensitive and selective for the measurement of CAs (NE, E and/or DA) in biological samples.  相似文献   

8.
The total 24 hour urinary outputs of the catecholamines norepinephrine (NE), epinephrine (E), dopamine (DA) and the DA metabolite homovanillic acid (HVA) were measured in hypertensive fawn-hooded rats and compared to the ancestral strain of normotensive Wistar rats. The hypertensive fawn-hooded rats demonstrated significantly higher urinary outputs of the catecholamines NE and DA, and of the DA metabolite HVA. Following treatment with the antihypertensive, debrisoquin sulfate, the blood pressure of the fawn-hooded rats decreased until it approached the levels observed in normotensive Wistar rats. By inhibiting sympathetic nervous activity and monoamine oxidase, the debrisoquin treatment significantly decreased the output of DA, NE and HVA but not E. The data suggest the fawn-hooded rat is a model of neurogenic hypertension which is characterized by an increased sympathetic output.  相似文献   

9.
The effects of subcutaneous injection of L-beta-3,4-dihydroxyphenylalamine (L-DOPA) on the concentrations of the catecholamines and catecholamine sulfates in the central and peripheral nervous systems of the rat were studied. The results showed that free 3,4-dihydroxyphenylethylamine (DA, dopamine) increased rapidly and markedly in the hypothalamus and striatum after L-DOPA but DA sulfate did not change. Increased concentrations of DA sulfate were detected in the CSF and in the plasma, where it reached a concentration of 130.8 +/- 12.8 ng/ml at 2 h, seven times the level of free DA (19.1 +/- 2.9 ng/ml). In the kidney the ratio of DA sulfate to free DA was reversed in favor of free DA. Urine samples of L-DOPA-treated rats showed a higher increase of free DA than DA sulfate, but free norepinephrine (NE) and NE sulfate remained unchanged. Concentrations of free DA and free NE in the adrenal glands of L-DOPA-treated rats showed no change. Adrenal DA sulfate and NE sulfate were not detectable in the control and L-DOPA-treated rats, suggesting that the adrenal glands lack the capacity to take up or store catecholamines and their sulfate counterparts from the plasma.  相似文献   

10.
Dopamine in rat adrenal glomerulosa   总被引:1,自引:0,他引:1  
There is increasing evidence that dopamine (DA) inhibits aldosterone production, but the source of DA for this dopaminergic influence is not known. In the present study we examined the adrenal's zona glomerulosa for the presence of DA. Rats maintained on an intake of regular food were killed by decapitation and the adrenal capsule (containing zona glomerulosa) and the remainder of the gland (containing both cortex and medulla) were examined for their content of DA and also for norepinephrine (NE) and epinephrine (E). DA was found in adrenal glomerulosa in substantial quantity, 1.92 +/- 0.17 (SEM) ng/mg wet weight, representing an approximate concentration of DA of 1-100 microM. DA in adrenal capsule represented 12.2% of the total adrenal content of DA. NE and E were also present in glomerulosa, 3.46 +/- 0.32 and 18.7 +/- 2.1 ng/mg respectively, but, unlike DA, about 98% of the total adrenal content of NE and E was contained in adrenal medulla. The NE/E ratio in capsule and medulla were similar, although slightly higher in adrenal medulla, suggesting that the medulla is the source of the NE and E found in glomerulosa. On the other hand, the DA/E ratio was several-fold higher in glomerulosa than medulla--suggesting that glomerulosa DA was derived at least partially from a source other than adrenal medulla. We also found that short-term culturing of the adrenal reduced DA levels to 1/3 that observed in fresh tissue. This could explain in part why cultured glomerulosa has been shown to be more responsive to administered stimuli. In summary, the findings indicate a significant concentration of DA in adrenal glomerulosa, and suggest that the effects of DA on aldosterone production are mediated locally within the adrenal.  相似文献   

11.
Central and peripheral noradrenergic tone in primary hypertension   总被引:1,自引:0,他引:1  
The contents of norepinephrine (NE), epinephrine (E), dopamine (DA), normetanephrine (NMN), and 4-hydroxy-3-methoxyphenylethylene glycol (MHPG) were measured in the plasma and cerebrospinal fluid (CSF) of 66 patients with primary hypertension and 24 patients with normal blood pressure and minor neurological disorders. Plasma and CSF NE and NMN concentrations were raised in the hypertensive patients. The plasma and CSF NE levels and arterial blood pressure of a small subset of hypertensive patients were normalized after clonidine therapy. In hypertensive patients the content of DA was lower and the ratio of NE/DA was greater; CSF and plasma NE contents were related to the level of arterial blood pressure; and the content of MHPG in CSF was linked strongly with NE content in plasma and CSF and to the level of arterial blood pressure. Thus both central sympathetic nerve tone and peripheral sympathetic nerve tone were enhanced in young patients with uncomplicated hypertension. The elevated levels of neurohormones and their metabolites in some patients with primary hypertension may be related to increased synthesis and release of neural NE and may be pathogenic in the blood pressure elevation.  相似文献   

12.
Aorta-coarcted hypertensive rats and sham-operated normotensive rats were compared in order to assess the contribution of sympathetic nervous system activity to the elevated blood pressure in these rats at an early (6 days) and chronic (42 days) stage of hypertension. Norepinephrine (NE), epinephrine (E) and dopamine (DA) levels were quantitated in plasma, heart and vascular tissues (aorta, inferior vena cava, mesenteric artery and vein) using a radioenzymatic procedure. Body weight was significantly reduced and mean arterial blood pressure (MABP) significantly increased in the coarcted rats at both stages of hypertension. Plasma catecholamines did not differ at either stage of hypertension. The NE content of the heart and mesenteric artery was significantly decreased in the coarcted rats at both stages of hypertension but unchanged in the other vessels studied. E and DA levels in the heart and all vasculature analyzed remained unaltered at both stages of hypertension. The present results suggest that neither E nor DA makes a major contribution to the development and maintenance of hypertension in the aorta-coarcted rat. The observation of the reduced cardiac NE concentration in the coarcted rats together with literature reports of similar observations in other animal models of hypertension suggests that myocardial NE depletion is a common feature of the hypertension and not dependent on the methodology used to produce that hypertension.  相似文献   

13.
The aim of the present study was to test the hypothesis that 3, 4-dihydroxyphenylalanine (DOPA) and dopamine (DA) in the gastrointestinal tract are to a large extent of exogenous origin and derived from food. Tissue concentrations of norepinephrine (NE), epinephrine (Epi), DA, DOPA, and 3,4-dihydroxyphenylacetic acid (DOPAC), as measured by reverse-phase HPLC with electrochemical detection, were studied in fed and 4-day-fasted Wistar rats as well as in sympathectomized and adrenodemedullated rats. Sympathectomy and adrenal demedullectomy decreased tissue concentrations of NE and Epi, respectively, but had no effect on the level of tissue DOPA. Large amounts of DOPA and DA were present in the gastrointestinal tract. Fasting decreased DOPA and DA in the stomach and DOPA concentrations in the quadriceps muscle but no concentrations in other organs. DOPAC in the heart decreased both in response to sympathectomy and to fasting, whereas DOPAC decreased in plasma after fasting and in skeletal muscle after sympathectomy. We conclude that the food content of DOPA and DA is of major importance for the metabolism of DA and, thus, for the dopamine-sulfate content in the gastrointestinal tract and in plasma. The decrease in muscle DOPA after fasting may be explained by less insulin being available during fasting for stimulation of DOPA uptake in the muscle depot. DOPAC in the organism seems to be of a dual origin, derived partly from DA in the food and partly from DA synthesized in sympathetic nerves.  相似文献   

14.
To investigate the relationship between dopamine (DA) released into the bloodstream and sympathoadrenal activity, levels of free DA, norepinephrine (NE), and epinephrine (E) in plasma were recorded in four dogs subjected to three tests: treadmill exercise at two work levels [55 and 75% maximal O2 uptake; 15 min], normobaric hypoxia (12% O2; 1 h), combined exercise and hypoxia. Normoxic exercise induced slight nonsignificant decreases in the arterial partial pressure of O2 (PaO2), increases in NE [median values and ranges during submaximal work vs. rest: 1086 (457-1,637) vs. 360 (221-646) pg/ml; P less than 0.01] and E [277 (151-461) vs. 166 (95-257) pg/ml; P less than 0.05], but it failed to alter the DA level. Hypoxia elicited large decreases in PaO2 [hypoxia vs. normoxia: 42.8 (40.3-50.0) vs. 97.6 (83.2-117.6) Torr; P less than 0.01], increases in DA [230 (105-352) vs. 150 (85-229) pg/ml; P less than 0.01] and NE [383 (219-1,165) vs. 358 (210-784) pg/ml; P less than 0.05], but it failed to alter the E level. Combined exercise and hypoxia further increased NE levels but did not alter the DA response to hypoxia alone. The data indicate that free DA in plasma may vary independently of the sympathoadrenal activity.  相似文献   

15.
We investigated roles of catecholamines in metamorphosis of the prosobranch gastropod, Crepidula fornicata. Levels of DOPA, norepinephrine (NE) and dopamine (DA) were measured by high-pressure liquid chromatography (HPLC) in competent larvae and juvenile siblings that metamorphosed in response to the natural adult-derived cue or to elevated K+. Competent larvae contained 1.58 +/- 0.26 (S.E.M.) x 10(-2) pmol DOPA, 0.91 +/- 0.45 x 10(-2) pmol NE, and 0.290 +/- 0.087 pmol DA (mean values per microg total protein, n = 4 batches of larvae). Levels of DA per individual were not different between larvae and juvenile siblings; levels of NE were higher in juveniles. The tyrosine hydroxylase (TH) inhibitor alpha-methyl-DL-m-tyrosine (alpha-MMT) depleted DOPA and DA to approximately half of control values without affecting levels of NE. Depletion of DOPA and DA was accompanied by inhibition of metamorphosis in response to the natural cue but not to elevated K+. The dopamine-beta-hydroxylase inhibitor diethyldithiocarbamate (DDTC) induced high frequencies of metamorphosis at concentrations of 0.1-10 microM. In juveniles induced by 10 microM DDTC, levels of both NE and DA averaged approximately 80% of those in control larvae. Catecholamines may function as endogenous regulators of metamorphosis in C. fornicata.  相似文献   

16.
Under basal conditions, the levels of circulating norepinephrine (NE) and epinephrine (E) were higher in normotensive Wistar rats of different origins than in Sprague-Dawley rats. Since the decline of 3H-NE concentration in the plasma after i.v. injection was similar in Wistar and in Sprague-Dawley rats, the higher levels of endogenous NE in the former strain probably reflect greater NE release from sympathetic nerve terminals. In normotensive Sprague-Dawley and Wistar rats, plasma NE rose to various extents during cold exposure (4°C), depending on the basal plasma NE levels. Compared with normotensive Wistar Kyoto rats (WKY), spontaneously hypertensive rats (SHR) had similar basal plasma E and NE concentrations, similar rates of 3H-NE disappearance, but more rapid increases to higher values of plasma NE during cold exposure. It is concluded that the basal rate of peripheral catecholamine release does not seem to be the main determining factor for arterial blood pressure in the various rat strains and that the sympathetic neuronal system of SHR is more responsive to cold exposure than that of WKY rats.  相似文献   

17.
Catecholamine and thyroid hormone metabolism in a case of anorexia nervosa   总被引:1,自引:0,他引:1  
Alterations in catecholamine (CA) and thyroid hormone metabolism were examined in a 12-year-old girl with anorexia nervosa during 3 months of treatment. According to her body weight change, the observation period was divided into 3 stages: initial emaciation (stage 1), stable maintenance of the -30% level of the previous weight (stage 2) and convalescent stage (stage 3). Stage 1 was characterized by relatively high urinary norepinephrine (NE) and epinephrine (E) but low dopamine (DA) excretion, elevated plasma DA-beta-hydroxylase (DBH) activity and reduced serum thyroid hormones, especially the triiodothyronine (T3) level. In stage 2, urinary CAs were markedly suppressed, while serum thyroid hormones gradually increase. In stage 3, a great increase in DA excretion, a fall in plasma DBH activity and normalization of thyroid hormones were observed. In the low T3 state below 60 ng/dl, urinary NE + E/DA ratios were elevated and widely fluctuated (0.58 +/- 0.30, SD), but were gradually decreased and completely stabilized in the normal T3 state (0.07 +/- 0.02, P less than 0.001). These results indicate that (1) although total CA production was depressed in anorexia nervosa, a change from an adrenergic-dominant to a dopaminergic-dominant state occurs in accordance with body weight gain, and (2) this shift in the CA profile is associated with concomitant recovery of reduced thyroid hormone concentrations. Thus, as for the energy expenditure, compensatory changes were observed in CAs and thyroid hormones in relation to caloric restriction.  相似文献   

18.
The effects of eating bananas, a rich source of biogenic amines, on the plasma concentration of free and sulfate conjugated norepinephrine (NE) and dopamine (DA), and free epinephrine (E), were examined in normal male subjects before and after treatment with ascorbic acid, 2 g daily for 7 days. There were no significant changes in the levels of free NE or E in any subjects after eating a banana, either before or after ascorbic acid. Plasma free DA became detectable in some subjects, but the overall changes were not significant. Sulfate conjugated DA and NE increased markedly after banana ingestion, as previously demonstrated in our laboratory. After ascorbic acid treatment the rise in sulphate conjugated NE was attenuated, presumably because ascorbic acid acts as a competitive inhibitor of sulfate conjugation. In contrast, the rise in conjugated DA was potentiated after ascorbic acid treatment. This may be indicative of the higher affinity of DA for phenolsulfotransferase, an inhibitory effect of ascorbic acid on dopamine-receptor coupling or of ascorbic acid protecting DA from oxidation in the gut.  相似文献   

19.
目的:研究气温骤升导致高血压大鼠发生脑梗塞过程中单胺类神经递质的变化。方法:采用易卒中型肾血管性高血压(RHRSP)模型,放置于人工模拟的气温骤升环境中诱发脑卒中,检测气温骤升前后大鼠单胺类神经递质E、NE和DA的变化。结果:气温骤升时,正常生理组大鼠血中NE水平明显降低(P<0.01),E和DA变化不明显;而当升温结束后,NE出现明显的回升(P<0.01),恢复到升温前水平,DA继续下降,明显低于同组降温前和降温中水平(P<0.01)。高血压大鼠血中的单胺类神经递质在气温骤升的刺激下出现异常升高,E、NE和DA浓度均比升温前明显的升高(P<0.01),其中E和NE水平还明显地高于同一时间点的生理组大鼠(P<0.01)。模型组升温后发生脑梗塞的大鼠血E水平仍明显高于同一时间点的生理组大鼠(P<0.05)和同组升温前水平(P<0.01)。结论:在气温骤升的应激刺激下,高血压机体内单胺类神经递质的异常升高及其调节的紊乱是骤然高温诱发脑梗塞发病的重要机制。  相似文献   

20.
Vasopressin V(1b) receptor is specifically expressed in the pituitary and mediates adrenocorticotropin release, thereby regulating stress responses via its corticotropin releasing factor-like action. In the present study we examined catecholamine release in response to two types of stress in mice lacking the V(1b) receptor gene (V(1b)R(-/-) mice) vs. wild-type mice. There were no significant differences in the basal plasma levels of catecholamines between the two genotypes. In response to stress induced by forced swimming, norepinephrine (NE), but not epinephrine (E) or dopamine (DA), was increased in wild-type mice, whereas the increases in NE and DA were not observed in V(1b)R(-/-) mice. In wild-type mice, E, but not NE or DA, was increased in response to social isolation stress, whereas the increase in E was not observed in V(1b)R(-/-) mice. These results suggest that the V(1b) receptor regulates stress-induced catecholamine release. Because it has been suggested that arginine-vasopressin (AVP) is related to the development of depression, we also evaluated immobility time in the forced swimming test, and we found no significant change in V(1b)R(-/-) mice. Taken together, these findings suggest that, in addition to the previously elucidated effect on the hypothalamic-pituitary-adrenal axis, vasopressin activity via V(1b) receptors regulates stress-induced catecholamine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号