首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zebrafish retina contains five morphologically distinct classes of photoreceptors, each expressing a distinct type of opsin gene. Molecular mechanisms underlying specification of opsin expression and differentiation among the cell types are largely unknown. This is partly because mutants affected with expression of a particular class of opsin gene are difficult to find. In this study we established the transgenic lines of zebrafish carrying green fluorescent protein (GFP) gene under the 1.1-kb and 3.7-kb upstream regions of the rod-opsin gene. In transgenic fish, GFP expression initiated and proceeded in the same spatiotemporal pattern with rod-opsin gene. The retinal section from adult transgenic fish showed GFP expression throughout the rod cell layer. These results indicate that the proximal 1.1-kb region is sufficient to drive gene expression in all rod photoreceptor cells. These transgenic fish should facilitate screening of mutants affected specifically with rod-opsin expression or rod cell development by visualization of rod cells by GFP.  相似文献   

2.
The outer retinae of adults of 13 atherinomorph species, representing nine different families, were examined by both light and electron microscopy. The retinae were investigated with respect to photoreceptor types, cone densities, and cone patterns. All data were composed to eye maps. This procedure allows an interspecific comparison of the regional differences within the outer retina among these shallow-water fish. Furthermore, for a more detailed pattern analysis nitro-blue tetrazolium chloride- (NBT)-stainings in the retina of Melanotaenia maccullochi are presented. Apart from rods, eight morphologically different cone types could be identified: short, intermediate, and long single cones, double cones (equal and unequal), triple cones (triangular and linear), and in Ameca splendens one quadruple cone. Dimensions and occurrence of photoreceptors vary among the respective species and within the retinal regions. In the light-adapted state, the cones are arranged in highly ordered mosaics. Five different cone tessellation types were found: row patterns, twisted row patterns, square patterns, pentagonal patterns, and, exclusively in Belone belone, a hexagonal pattern. In Melanotaenia maccullochi the different spectral photoreceptor classes correspond well with the distribution of morphological photoreceptor classes within the mosaic. Double cone density maxima together with a highly ordered cone arrangement usually occur in the nasal and/or ventral to ventrotemporal retina. In most of the species that were examined these high-density regions are presumed to process visual stimuli from the assumed main directions of vision, which mainly depend on feeding behavior and predator pressure. Our findings are discussed with respect to the variable behavioral and visual ecology and phylogeny of the respective species.  相似文献   

3.
We examined histologically the retinal cone photoreceptor mosaics of 0- to 6-year-old Champsocephalus gunnari. In the retina of 0- to 3-year-old fish, three types of cone cells, single-, double- and triple-cone, were identified. The triple-cone cells were localized near the optic papilla. In the outer region of the optic papilla, double-cone and single-cone cells were aligned alternately. Only double-cone cells were distributed in the peripheral retina. There were very few single-cone cells in the retinas of 4- to 6-year-old fish. The putative ultraviolet (UV)-sensitive visual pigment (SWS1) gene was isolated from the retina of 0- to 1-year-old fish. The recombinant opsin, encoded by this gene, showed a peak absorbance at 358 nm. It was considered that the UV sensitivity in juvenile C. gunnari might increase foraging efficiency by enhancing the contrast of the planktonic prey in the Antarctic summer.  相似文献   

4.
5.
Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model.  相似文献   

6.
Rod-specific photoreceptor dystrophies are complicated by the delayed death of genetically normal neighboring cones. In transgenic (Tg) swine with a rod-specific (rhodopsin) gene mutation, cone photoreceptor physiology was normal for months but later declined, consistent with delayed cone cell death. Surprisingly, cone postreceptoral function was markedly abnormal when cone photoreceptor physiology was still normal. The defect was localized to hyperpolarizing cells postsynaptic to the middle wavelength-sensitive cones. Recordings throughout postnatal development indicated a failure of cone circuitry maturation, a novel mechanism of secondary cone abnormality in rod dystrophy. The results have implications for therapy for human retinal dystrophies and raise the possibility that rod afferent activity plays a role in the postnatal maturation of cone retinal circuitry.  相似文献   

7.
8.
In order to investigate whether foreign genes can be used as genetic markers of donor nuclei in fish nuclear transplantation, expression of the GFP gene derived from donor nuclei was examined in nuclear transplants in medaka (Oryzias latipes). Embryonic nuclei were obtained from blastula embryos produced by crossing of transgenic fish of the wild-type strain heterozygous for the GFP gene with nontransgenic ones or by mutual crossing between transgenic fish. The GFP gene was driven by the promoter of the medaka elongation factor gene, EF-1alpha-A, which is known to induce GFP expression in many tissues except for the muscle in the transgenic fish. The nuclei were transplanted into nonenucleated unfertilized eggs of the orange-red strain. Adult nuclear transplants were successfully obtained at the rate of about 2% of the operated eggs. They were triploid and had no reproductive potential. The GFP gene was expressed in embryos, fry, and adults of nuclear transplants in a pattern similar to that in the transgenic fish. These results indicate that GFP is useful as a foreign genetic marker of donor nuclei in fish nuclear transplantation.  相似文献   

9.
X Li  J Montgomery  W Cheng  JH Noh  DR Hyde  L Li 《PloS one》2012,7(7):e40508
In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.  相似文献   

10.
The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called “Y-Junctions”, form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.  相似文献   

11.
To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.  相似文献   

12.
Colour vision is mediated by the expression of different visual pigments in photoreceptors of the vertebrate retina. Each visual pigment is a complex of a protein (opsin) and a vitamin A chromophore; alterations to either component affects visual pigment absorbance and, potentially, the visual capabilities of an animal. Many species of fish undergo changes in opsin expression during retinal development. In the case of salmonid fishes the single cone photoreceptors undergo a switch in opsin expression from SWS1 (ultraviolet sensitive) to SWS2 (blue-light sensitive) starting at the yolk-sac alevin stage, around the time when they first experience light. Whether light may initiate this event or produce a plastic response in the various photoreceptors is unknown. In this study, Chinook salmon Oncorhynchus tshawytscha were exposed to light from the embryonic (5 days prior to hatching) into the yolk sac alevin (25 days post hatching) stage and the spectral phenotype of photoreceptors assessed with respect to that of unexposed controls by in situ hybridization with opsin riboprobes. Light exposure did not change the spectral phenotype of photoreceptors, their overall morphology or spatial arrangement. These results concur with those from a variety of fish species and suggest that plasticity in photoreceptor spectral phenotype via changes in opsin expression may not be a widespread occurrence among teleosts.  相似文献   

13.
To assess alternative methods for introducing expressing transgenes into the germ line of zebrafish, transgenic fish that express a nuclear-targeted, enhanced, green fluorescent protein (eGFP) gene were produced using both pseudotyped retroviral vector infection and DNA microinjection of embryos. Germ-line transgenic founders were identified and the embryonic progeny of these founders were evaluated for the extent and pattern of eGFP expression. To compare the two modes of transgenesis, both vectors used the Xenopus translational elongation factor 1-alpha enhancer/promoter regulatory cassette. Several transgenic founder fish which transferred eGFP expression to their progeny were identified. The gene expression patterns are described and compared for the two modes of gene transfer. Transient expression of eGFP was detected 1 day after introducing the transgenes via either DNA microinjection or retroviral vector infection. In both cases of gene transfer, transgenic females produced eGFP-positive progeny even before the zygotic genome was turned on. Therefore, GFP was being provided by the oocyte before fertilization. A transgenic female revealed eGFP expression in her ovarian follicles. The qualitative patterns of gene expression in the transgenic progeny embryos after zygotic induction of gene expression were similar and independent of the mode of transgenesis. The appearance of newly synthesized GFP is detectable within 5-7 h after fertilization. The variability of the extent of eGFP expression from transgenic founder to transgenic founder was wider for the DNA-injection transgenics than for the retroviral vector-produced transgenics. The ability to provide expressing germ-line transgenic progeny via retroviral vector infection provides both an alternative mode of transgenesis for zebrafish work and a possible means of easily assessing the insertional mutagenesis frequency of retroviral vector infection of zebrafish embryos. However, because of the transfer of GFP from oocyte to embryo, the stability of GFP may create problems of analysis in embryos which develop as quickly as those of zebrafish.  相似文献   

14.
Approaches for manipulating cell type-specific gene expression during development depend on the identification of novel genetic tools. Here, we report the generation of a transgenic mouse line that utilizes Vsx2 upstream sequences to direct Cre recombinase to developing retinal bipolar cells. In contrast to the endogenous Vsx2 expression pattern, transgene expression was not detected in proliferating retinal progenitor cells and was restricted to post-mitotic bipolar cells. Cre immunolabeling was detected in rod bipolar cells and a subset of ON and OFF cone bipolar cells. Expression was first observed at postnatal day 3 and was detectable between 24 hours and 36 hours after the last S-phase of the cell cycle. The appearance of Cre-immunolabeled cells preceded the expression of bipolar cell type-specific markers such as PKCα and Cabp5 suggesting that transgene expression is initiated prior to terminal differentiation. In the presence of a constitutive conditional reporter transgene, reporter fluorescence was detected in Cre-expressing bipolar cells in the mature retina as expected, but was also observed in Cre-negative Type 2 bipolar cells and occasionally in Cre-negative photoreceptor cells. Together these findings reveal a new transgenic tool for directing gene expression to post-mitotic retinal precursors that are mostly committed to a bipolar cell fate.  相似文献   

15.
16.
Development of therapies to treat visual system dystrophies resulting from the degeneration of rod and cone photoreceptors may directly benefit from studies of animal models, such as the zebrafish, that display continuous retinal neurogenesis and the capacity for injury-induced regeneration. Previous studies of retinal regeneration in fish have been conducted on adult animals and have relied on methods that cause acute damage to both rods and cones, as well as other retinal cell types. We report here the use of a genetic approach to study progenitor cell responses to photoreceptor degeneration in the larval and adult zebrafish retina. We have compared the responses to selective rod or cone degeneration using, respectively, the XOPS-mCFP transgenic line and zebrafish with a null mutation in the pde6c gene. Notably, rod degeneration induces increased proliferation of progenitors in the outer nuclear layer (ONL) and is not associated with proliferation or reactive gliosis in the inner nuclear layer (INL). Molecular characterization of the rod progenitor cells demonstrated that they are committed to the rod photoreceptor fate while they are still mitotic. In contrast, cone degeneration induces both Müller cell proliferation and reactive gliosis, with little change in proliferation in the ONL. We found that in both lines, proliferative responses to photoreceptor degeneration can be observed as 7 days post fertilization (dpf). These two genetic models therefore offer new opportunities for investigating the molecular mechanisms of selective degeneration and regeneration of rods and cones.  相似文献   

17.

Purpose

To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula) compared with age-matched HIV-negative controls.

Methods

Cohort of patients with known HIV under CART (combination Antiretroviral Therapy) treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT) to assess retinal layers and retinal thickness.

Results

Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative) were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior), the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308–6,872 cones/mm2). A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative) was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea). We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer) was also significantly thickened in all the different locations scanned compared with HIV-negative controls.

Conclusion

Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.  相似文献   

18.
19.
M Chen  K Wang  B Lin 《PloS one》2012,7(8):e44036
Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP) in one subset of cone bipolar cells (type 7) into rd1 mice, a classic mouse model of retinal degeneration, to examine the development and survival of cone bipolar cells in a background of retinal degeneration. Our data revealed that both the development and degeneration of cone bipolar cells are independent of the normal activity of cone photoreceptors. We found that type 7 cone bipolar cells achieved a uniform tiling of the retinal surface and developed normal dendritic and axonal arbors without the influence of cone photoreceptor innervation. On the other hand, degeneration of type 7 cone bipolar cells, contrary to our belief of central-to-peripheral progression, was spatially uniform across the retina independent of the spatiotemporal pattern of cone degeneration. The results have important implications for the design of more effective therapies to restore vision in retinal degeneration.  相似文献   

20.
Ciliary neurotrophic factor (CNTF) is known as an important factor in the regulation of retinal cell growth. We used both recombinant CNTF and an adenovirus carrying the CNTF gene to regulate retinal photoreceptor expression in a retinal degenerative animal, Royal College of Surgeons (RCS) rats. Cells in the outer nuclear layer of the retinae from recombinant-CNTF-treated, adenoviral-CNTF-treated, saline-operated, and contralateral untreated preparations were examined for those exhibiting CNTF photoreceptor protective effects. Cell apoptosis in the outer nuclear layer of the retinae was also detected. It was found that CNTF had a potent effect on delaying the photoreceptor degeneration process in RCS rats. Furthermore, adenovirus CNTF gene transfer was proven to be better at rescuing photoreceptors than that when using recombinant CNTF, since adenoviral CNTF prolonged the photoreceptor protection effect. The function of the photoreceptors was also examined by taking electroretinograms of different animals. Adenoviral-CNTF-treated eyes showed better retinal function than did the contralateral control eyes. This study indicates that adenoviral CNTF effectively rescues degenerating photoreceptors in RCS rats.S.-P.H. and P.-K.L. contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号