首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Rep68 and Rep78 proteins (Rep68/78) of adeno-associated virus type 2 (AAV) are critical for AAV replication and site-specific integration. They bind specifically to the AAV inverted terminal repeats (ITRs) and possess ATPase, helicase, and strand-specific/site-specific endonuclease activities. In the present study, we further characterized the AAV Rep68/78 helicase, ATPase, and endonuclease activities by using a maltose binding protein-Rep68 fusion (MBP-Rep68Delta) produced in Escherichia coli cells and Rep78 produced in vitro in a rabbit reticulocyte lysate system. We found that the minimal length of single-stranded DNA capable of stimulating the ATPase activity of MBP-Rep68Delta is 100 to 200 bases. The degree of stimulation correlated positively with the length of single-stranded DNA added to the reaction mixture. We then determined the ATP concentration needed for optimal MBP-Rep68Delta helicase activity and showed that the helicase is active over a wide range of ATP concentrations. We determined the directionality of MBP-Rep68Delta helicase activity and found that it appears to move in a 3' to 5' direction, which is consistent with a model in which AAV Rep68/78 participates in AAV DNA replication by unwinding DNA ahead of a cellular DNA polymerase. In this report, we also demonstrate that single-stranded DNA is capable of inhibiting the MBP-Rep68Delta or Rep78 endonuclease activity greater than 10-fold. In addition, we show that removal of the secondary Rep68/78 binding site, which is found only in the hairpin form of the AAV ITR, causes a three- to eightfold reduction in the ability of the ITR to be used as a substrate for the Rep78 or MBP-Rep68Delta endonuclease activity. This suggests that contact between Rep68/78 and this secondary element may play an important role in the Rep-mediated endonuclease activity.  相似文献   

2.
The adeno-associated virus type 2 (AAV) Rep68 protein produced in Escherichia coli as a fusion protein with maltose-binding protein (MBP-Rep68 delta) has previously been shown to possess DNA-DNA helicase activity, as does the purified wild-type Rep68. In the present study, we demonstrate that MBP-Rep68 delta also catalyzes the unwinding of a DNA-RNA hybrid. MBP-Rep68 delta-mediated DNA-RNA helicase activity required ATP hydrolysis and the presence of Mg2+ ions and was inhibited by high ionic strength. The efficiency of the DNA-RNA helicase activity of MBP-Rep68 delta was comparable to its DNA-DNA helicase activity. However, MBP-Rep68 delta lacked the ability to unwind a blunt-ended DNA-RNA substrate and RNA-RNA duplexes. We have also demonstrated that MBP-Rep68 delta has ATPase activity which is enhanced by the presence of single-stranded DNA but not by RNA. The MBP-Rep68 delta NTP mutant protein, which has a lysine-to-histidine substitution at amino acid 340 in the putative nucleoside triphosphate-binding site of Rep68, not only lacks DNA-RNA helicase and ATPase activities but also inhibits the helicase activity of MBP-Rep68 delta. DNA-RNA helicase activity of Rep proteins might play a pivotal role in the regulation of AAV gene expression by AAV Rep proteins.  相似文献   

3.
4.
Four Rep proteins are encoded by the human parvovirus adeno-associated virus type 2 (AAV). The two largest proteins, Rep68 and Rep78, have been shown in vitro to perform several activities related to AAV DNA replication. The Rep78 and Rep68 proteins are likely to be involved in the targeted integration of the AAV DNA into human chromosome 19, and the full characterization of these proteins is important for exploiting this phenomenon for the use of AAV as a vector for gene therapy. To obtain sufficient quantities for facilitating the characterization of the biochemical properties of the Rep proteins, the AAV rep open reading frame was cloned and expressed in Escherichia coli as a fusion protein with maltose-binding protein (MBP). Recombinant MBP-Rep68 and MBP-Rep78 proteins displayed the following activities reported for wild-type Rep proteins when assayed in vitro: (i) binding to the AAV inverted terminal repeat (ITR), (ii) helicase activity, (iii) site-specific (terminal resolution site) endonuclease activity, (iv) binding to a sequence within the integration locus for AAV DNA on human chromosome 19, and (v) stimulation of radiolabeling of DNA containing the AAV ITR in a cell extract. These five activities have been described for wild-type Rep produced from mammalian cell extracts. Furthermore, we recharacterized the sequence requirements for Rep binding to the ITR and found that only the A and A' regions are necessary, not the hairpin form of the ITR.  相似文献   

5.
Adeno-associated virus (AAV) replication depends on two viral components for replication: the AAV nonstructural proteins (Rep) in trans, and inverted terminal repeat (ITR) sequences in cis. AAV type 5 (AAV5) is a distinct virus compared to the other cloned AAV serotypes. Whereas the Rep proteins and ITRs of other serotypes are interchangeable and can be used to produce recombinant viral particles of a different serotype, AAV5 Rep proteins cannot cross-complement in the packaging of a genome with an AAV2 ITR. In vitro replication assays indicated that the block occurs at the level of replication instead of at viral assembly. AAV2 and AAV5 Rep binding activities demonstrate similar affinities for either an AAV2 or AAV5 ITR; however, comparison of terminal resolution site (TRS) endonuclease activities showed a difference in specificity for the two DNA sequences. AAV2 Rep78 cleaved only a type 2 ITR DNA sequence, and AAV5 Rep78 cleaved only a type 5 probe efficiently. Mapping of the AAV5 ITR TRS identified a distinct cleavage site (AGTG TGGC) which is absent from the ITRs of other AAV serotypes. Comparison of the TRSs in the AAV2 ITR, the AAV5 ITR, and the AAV chromosome 19 integration locus identified some conserved nucleotides downstream of the cleavage site but little homology upstream.  相似文献   

6.
Replication of the palindromic inverted terminal repeats (ITRs) of adeno-associated virus type 2 requires several functions of the viral nonstructural Rep proteins. These include binding to the ITR, nicking of the double-stranded replication intermediate at the terminal resolution site (trs), and then strand displacement and synthesis from the nick. This report demonstrates the ability of both recombinant fusion maltose-binding protein (MBP)-Rep68 delta produced in Escherichia coli and wild-type (wt) Rep68 to bind to a linear truncated form of the ITR, delta 57 ITR, with similar affinity as to the wt hairpin ITR. A dissociation constant for MBP-Rep68 delta of approximately 8 x 10(-10) M was determined for the wt ITR and delta 57 ITR probes. Truncation of delta 57 ITR to generate delta 28 ITR, which retains the GCTC repeat motif but not the trs, bound at least 10 times less efficiently than delta 57 ITR. Extension of delta 28 ITR with nonspecific sequence restored the ability of MBP-Rep68 delta to bind to delta 28 ITR. Thus, high-affinity binding would appear to require stabilization by flanking sequence as well as the intact GCTC repeat motif. Cleavage of the delta 57 ITR probe with DdeI, which truncates the flanking sequence and was previously shown to inhibit binding by Rep68, also inhibited the binding of MBP-Rep68 delta. The requirements for stable binding were further defined with a series of oligonucleotide probes which spanned the region protected by MBP-Rep78 in DNase I footprinting. The binding activity of either MBP-Rep68 delta or wt Rep68 to hairpin ITR or delta 57 ITR was indistinguishable. However, the binding activity of MBP-Rep68 delta to DNA does not appear to correlate with trs endonuclease activity. The nicking and covalent linkage of MBP-Rep68 delta to the nonhairpin delta 57 ITR was approximately 100-fold less efficient than its linkage to a hairpin-containing ITR. Therefore, although the hairpin portion of the ITR does not appear to play a role in recognition and stabilization of MBP-Rep68 delta binding, its presence does affect the trs cleavage activity of the protein.  相似文献   

7.
Adeno-associated virus (AAV) codes for four closely related nonstructural proteins (Rep) required for AAV DNA replication and gene regulation. In vitro studies have revealed that either Rep78 or Rep68 alone is sufficient for AAV DNA replication. Rep52 and Rep40 are not required for DNA replication but have been reported to enhance the efficiency of accumulation of single-stranded progeny DNA. Previous studies on rep-expressing cell lines had indicated that only a subset of the four Rep proteins are required for the production of infectious AAV. We therefore set out to determine the minimal set of Rep proteins sufficient for the generation of infectious AAV. Transient cotransfections in HeLa cells of constructs for high-level expression of individual Rep proteins with a rep-negative AAV genome revealed that either Rep78 or Rep68 alone could complement for a full replication cycle yielding infectious virus. This result was confirmed by transfection studies in the cell line HeM2, which selectively expresses Rep78 at rather low levels under the control of the glucocorticoid-responsive mouse mammary tumor virus long terminal repeat (C. Hölscher, M. Hörer, J. A. Kleinschmidt, H. Zentgraf, A. Bürkle, and R. Heilbronn, J. Virol. 68:7169-7177, 1994). Increasing the level of Rep78 expression by transfection of a glucocorticoid receptor expression construct resulted in a higher level of DNA replication of a cotransfected rep-negative AAV genome and in the production of infectious rep-negative AAV particles. We further report on the generation of a new rep-expressing cell line, HeCM1, which was obtained by stable supertransfection of a construct for constitutive Rep40 expression into HeM1 cells (Hölscher et al., J. Virol. 68:7169-7177). Transfection of rather large amounts of rep-negative AAV DNA led to detectable virus production in HeCM1 cells even in the absence of the cotransfected glucocorticoid receptor expression construct, but higher yields were obtained after increasing the Rep78 level by coexpression of the glucocorticoid receptor. These data demonstrate that all Rep functions required for the productive replication of AAV in HeLa cells are contained within both Rep78 and Rep68.  相似文献   

8.
The rep gene of adeno-associated virus type 2 encodes four overlapping proteins from two separate promoters, termed P5 and P19. The P5-promoted Rep proteins, Rep78 and Rep68, are essential for viral DNA replication, and a wealth of data concerning the biochemical activities of these proteins has been reported. In contrast, data concerning the biochemical functions of the P19-promoted Rep proteins, Rep52 and Rep40, are lacking. Here, we describe enzymatic activities associated with a bacterially expressed maltose-binding protein (MBP)-Rep52 fusion protein. Purified MBP-Rep52 possesses 3′-to-5′ DNA helicase activity that is strictly dependent upon the presence of nucleoside triphosphate and divalent cation cofactors. In addition, MBP-Rep52 demonstrates a constitutive ATPase activity that is active in the absence of DNA effector molecules. An MBP-Rep52 chimera bearing a lysine-to-histidine substitution at position 116 (K116H) within a consensus helicase- and ATPase-associated motif (motif I or Walker A site) was deficient for both DNA helicase and ATPase activities. In contrast to a Rep78 A-site mutant protein bearing a corresponding amino acid substitution at position 340 (K340H), the MBP-Rep52 A-site mutant protein failed to exhibit a trans-dominant negative effect when it was mixed with wild-type MBP-Rep52 or MBP-Rep78 in vitro. This lack of trans dominance, coupled with the results of coimmunoprecipitation and gel filtration chromatography experiments reported here, suggests that the ability of Rep52 to engage in multimeric interactions may differ from that of Rep78 or -68.  相似文献   

9.
The adeno-associated virus (AAV) rep gene codes for a family of nonstructural proteins which are required for AAV gene regulation and DNA replication. In addition, rep has been implicated in a variety of activities outside the AAV life cycle which have been difficult to study, since attempts to achieve separate and constitutive expression of rep in stable cell lines have failed so far. Here we report the generation of two cell lines which inducibly express Rep78 under the control of the glucocorticoid-responsive mouse mammary tumor virus promoter. In addition, one of the cell lines constitutively expresses relatively high levels of Rep52. Both cell lines showed similar plating efficiencies with and without induction of Rep78 expression, which rules out cytotoxic effects of Rep78. The cell lines efficiently support DNA replication of a rep-negative AAV genome and initiate the formation of AAV particles. However, despite the correct sizes and stoichiometry of the three capsid proteins, the AAV particles were noninfectious. This was found to be due to a defect in the accumulation of single-stranded AAV DNA. Transient transfection of single expression constructs for constitutive, high-level expression of individual Rep proteins (either Rep78, Rep68, Rep52, or Rep40) complemented this defect. Infectious rep-negative AAV progeny was produced at varying efficiencies depending on the rep expression construct used. These data show that functional expression of full-length Rep in recombinant cell lines is possible and that the state of Rep expression is critical for the infectivity of AAV progeny produced.  相似文献   

10.
We performed live cell visualization assays to directly assess the interaction between competing adeno-associated virus (AAV) and herpes simplex virus type 1 (HSV-1) DNA replication. Our studies reveal the formation of separate AAV and HSV-1 replication compartments and the inhibition of HSV-1 replication compartment formation in the presence of AAV. AAV Rep is recruited into AAV replication compartments but not into those of HSV-1, while the single-stranded DNA-binding protein HSV-1 ICP8 is recruited into both AAV and HSV-1 replication compartments, although with differential staining patterns. Slot blot analysis of coinfected cells revealed a dose-dependent inhibition of HSV-1 DNA replication by wild-type AAV but not by rep-negative recombinant AAV. Consistent with this, Western blot analysis indicated that wild-type AAV affects the levels of the HSV-1 immediate-early protein ICP4 and the early protein ICP8 only modestly but strongly inhibits the accumulation of the late proteins VP16 and gC. Furthermore, we demonstrate that the presence of Rep in the absence of AAV DNA replication is sufficient for the inhibition of HSV-1. In particular, Rep68/78 proteins severely inhibit the formation of mature HSV-1 replication compartments and lead to the accumulation of ICP8 at sites of cellular DNA synthesis, a phenomenon previously observed in the presence of viral polymerase inhibitors. Taken together, our results suggest that AAV and HSV-1 replicate in separate compartments and that AAV Rep inhibits HSV-1 at the level of DNA replication.  相似文献   

11.
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.  相似文献   

12.
The Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which contain overlapping amino acid sequences. They are required for viral replication and preferential integration of the AAV genome into a region of human chromosome 19. During the terminal resolution process of AAV DNA replication, these proteins make a site-specific and strand-specific endonuclease cut within the AAV inverted terminal repeat DNA. The Rep68 and Rep78 proteins also have helicase and DNA-binding activities. The endonuclease activity is believed to involve the covalent attachment of Rep68 or Rep78 at the cut site via a phosphotyrosine linkage. In an attempt to identify the active-site tyrosine residue of Rep78 and Rep68, tyrosine residues were site specifically mutated to phenylalanines by overlap extension PCR, and the resulting PCR fragments were cloned into a maltose binding protein-Rep68 fusion (MBP-Rep68delta) expression vector. The mutant MBP-Rep68delta proteins were expressed in Escherichia coli cells, purified with amylose resin, and assayed in vitro for Rep68-specific activities. Although several of the mutations disrupted the endonuclease activity, only the mutation of tyrosine 152 abrogated the endonuclease activity with no discernible effect on the helicase or DNA-binding activities. Our data therefore suggest that there are distinct active sites for the helicase and endonuclease activities.  相似文献   

13.
The human adeno-associated virus (AAV) has generated much enthusiasm as a transfer vector for human gene therapy. Although clinical gene therapy trials have been initiated using AAV vectors, much remains to be learned regarding the basic mechanisms of virus replication, gene expression, and virion assembly. AAV encodes four nonstructural, or replication (Rep), proteins. The Rep78 and Rep68 proteins regulate viral DNA replication, chromosomal integration, and gene expression. The Rep52 and Rep40 proteins mediate virus assembly. To better understand Rep protein function, we have expressed the Rep40 protein in Escherichia coli and purified it to near homogeneity. Like the other Rep proteins, Rep40 possesses helicase and ATPase activity. ATP is the best substrate, and Mg2+ is the most efficient divalent metal ion for helicase activity. A Lys to His mutation in the purine nucleotide-binding site results in a protein that inhibits helicase activity in a dominant negative manner. Rep40 unwinds double-stranded DNA containing a 3' single-stranded end, or blunt end, unlike the Rep68 and Rep52 enzymes, which have a strict requirement for DNA duplexes containing a 3' single-stranded end. Values for KATP in the ATPase assay are 1.1 +/- 0.2 mM and 1.2 +/- 0.2 mM in the absence and presence, respectively, of single-stranded DNA. Values for Vmax are 220 +/- 10 and 1,500 +/- 90 nmol/min/mg in the absence and presence, respectively, of single-stranded DNA. These studies provide the first enzymatic characterization of the AAV Rep40 protein and elucidate important functional differences between the AAV helicases.  相似文献   

14.
Both the Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) bind to AAV terminal repeat hairpin DNA and can mediate site-specific nicking in vitro at the terminal resolution site (trs) within the terminal repeats. To define the regions of the Rep proteins required for these functions, a series of truncated Rep78 derivatives was created. Wild-type and mutant proteins were synthesized by in vitro translation and analyzed for AAV hairpin DNA binding, trs endonuclease activity, and interaction on hairpin DNA. Amino-terminal deletion mutants which lacked the first 29 or 79 amino acid residues of Rep78 did not bind hairpin DNA, which is consistent with our previous identification of a DNA-binding domain in this region. Progressive truncation of the carboxyl-terminal region of Rep78 did not eliminate hairpin DNA binding until the deletion reached amino acid 443. The electrophoretic mobility of the Rep-specific protein-DNA complexes was inversely related to the molecular weight of the Rep derivative. Analysis of the C-terminal deletion mutants by the trs endonuclease assay identified a region (amino acids 467 to 476) that is essential for nicking but is not necessary for DNA binding. When endonuclease-positive, truncated Rep proteins that bound hairpin DNA were mixed with full-length Rep78 or Rep68 protein in electrophoretic mobility shift assays, a smear of protein-DNA complexes was observed. This smear migrated at an intermediate position with respect to the bands generated by the proteins individually. An antibody recognizing only the full-length protein produced a novel supershift band when included in a mixed binding assay containing Rep68 and a truncated Rep mutant. These experiments suggest that the Rep proteins can form hetero-oligomers on the AAV hairpin DNA.  相似文献   

15.
We previously reported the development of an in vitro adeno-associated virus (AAV) DNA replication system. The system required one of the p5 Rep proteins encoded by AAV (either Rep78 or Rep68) and a crude adenovirus (Ad)-infected HeLa cell cytoplasmic extract to catalyze origin of replication-dependent AAV DNA replication. However, in addition to fully permissive DNA replication, which occurs in the presence of Ad, AAV is also capable of partially permissive DNA replication in the absence of the helper virus in cells that have been treated with genotoxic agents. Limited DNA replication also occurs in the absence of Ad during the process of establishing a latent infection. In an attempt to isolate uninfected extracts that would support AAV DNA replication, we discovered that HeLa cell extracts grown to high density can occasionally display as much in vitro replication activity as Ad-infected extracts. This finding confirmed previous genetic analyses which suggested that no Ad-encoded proteins were absolutely essential for AAV DNA replication and that the uninfected extracts should be useful for studying the differences between helper-dependent and helper-independent AAV DNA replication. Using specific chemical inhibitors and monoclonal antibodies, as well as the fractionation of uninfected HeLa extracts, we identified several of the cellular enzymes involved in AAV DNA replication. They were the single-stranded DNA binding protein, replication protein A (RFA), the 3′ primer binding complex, replication factor C (RFC), and proliferating cell nuclear antigen (PCNA). Consistent with the current model for AAV DNA replication, which requires only leading-strand DNA synthesis, we found no requirement for DNA polymerase α-primase. AAV DNA replication could be reconstituted with purified Rep78, RPA, RFC, and PCNA and a phosphocellulose chromatography fraction (IIA) that contained DNA polymerase activity. As both RFC and PCNA are known to be accessory proteins for polymerase δ and , we attempted to reconstitute AAV DNA replication by substituting either purified polymerase δ or polymerase for fraction IIA. These attempts were unsuccessful and suggested that some novel cellular protein or modification was required for AAV DNA replication that had not been previously identified. Finally, we also further characterized the in vitro DNA replication assay and demonstrated by two-dimensional (2D) gel electrophoresis that all of the intermediates commonly seen in vivo are generated in the in vitro system. The only difference was an accumulation of single-stranded DNA in vivo that was not seen in vitro. The 2D data also suggested that although both Rep78 and Rep68 can generate dimeric intermediates in vitro, Rep68 is more efficient in processing dimers to monomer duplex DNA. Regardless of the Rep that was used in vitro, we found evidence of an interaction between the elongation complex and the terminal repeats. Nicking at the terminal repeats of a replicating molecule appeared to be inhibited until after elongation was complete.  相似文献   

16.
The subnuclear distribution of replication complex proteins is being recognized as an important factor for the control of DNA replication. Herpes simplex virus (HSV) single-strand (ss)DNA-binding protein, ICP8 (infected cell protein 8) accumulates in nuclear replication domains. ICP8 also serves as helper function for the replication of adeno-associated virus (AAV). Using quantitative 3D colocalization analysis we show that upon coinfection of AAV and HSV the AAV replication protein Rep and ICP8 co-reside in HSV replication domains. In contrast, Rep expressed by a recombinant HSV, in the absence of AAV DNA, displayed a nuclear distribution pattern distinct from that of ICP8. Colocal ization of Rep and ICP8 was restored by the reintroduction of single-stranded AAV vector genomes. In vitro, ICP8 displayed direct binding to Rep78. Single-stranded recombinant AAV DNA strongly stimulated this interaction, whereas double-stranded DNA was ineffective. Our findings suggest that ICP8 by its strong ssDNA-binding activity exploits the unique single-strandedness of the AAV genome to form a tripartite complex with Rep78 and AAV ssDNA. This novel mechanism for recruiting components of a functional replication complex directs AAV to subnuclear HSV replication compartments where the HSV replication complex can replicate the AAV genome.  相似文献   

17.
Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. We studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with [35S]methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.  相似文献   

18.
PKA/PrKX activity is a modulator of AAV/adenovirus interaction   总被引:7,自引:0,他引:7  
Interference between viruses occurs when infection by one virus results in the inhibition of replication of another virus. Adeno-associated virus (AAV2) is a human parvovirus with the unique characteristics of a dependence upon a helper virus for a productive infection and the ability to interfere with the replication of the helper virus. Previously, we demonstrated that AAV2 Rep78 and Rep52 interact and inhibit cAMP-dependent protein kinase A (PKA) and its novel homolog PrKX. We hypothesized that modulation of PKA activity by AAV2 may be responsible for inhibition of helper virus replication. In this study we demonstrate that adenovirus replication is sensitive to PKA activity and that AAV2 Rep78/Rep52 proteins contain an inhibitory domain similar to that of the heat-stable PKA inhibitor. This domain, while not directly necessary for AAV2 replication and packaging, is necessary to preserve AAV2 replication fitness during an Ad co-infection. Furthermore, a mutant AAV2 virus lacking this region fails to inhibit adenovirus replication. Thus, inhibition of PKA activity by AAV2 constitutes a novel form of viral interference.  相似文献   

19.
We have used differential cell extraction and conventional chromatography to separate and partially purify the four adeno-associated virus (AAV) nonstructural proteins Rep78, Rep68, Rep52, and Rep40. In the cytoplasmic extracts Rep52 and Rep40 were present in greater abundance than Rep68 and Rep78, with Rep78 being the least abundant. In nuclear extracts the four Rep proteins were approximately equal in abundance. Regardless of the subcellular fraction examined, three of the Rep proteins (Rep78, Rep68, and Rep40) consisted of two protein species with slightly different mobilities during polyacrylamide gel electrophoresis. In contrast, Rep52 consisted of only one protein species. Both Rep78 and Rep68 were capable of binding efficiently to AAV terminal hairpin DNA substrates, but we could not detect site-specific DNA binding by Rep52 and Rep40. Like Rep68, Rep78 had both an ATP-dependent trs endonuclease and a DNA helicase activity. Both Rep78 and Rep68 cut the terminal AAV sequence at the same site (nucleotide 124). The binding, trs endonuclease, and DNA helicase activities comigrated during sucrose density gradient centrifugation with a mobility expected for a monomer of the protein, suggesting that the three biochemical activities were intrinsic properties of the larger Rep proteins. The chromatographic behavior and the DNA-binding properties of the four Rep proteins identified at least two domains within the rep coding region, an exposed hydrophobic domain within the C-terminal end (amino acids 578 to 621) and a region within the N terminus (amino acids 1 to 214) which was necessary for binding to the terminal repeat sequence. No site-specific nuclease activity was seen in the presence of nucleotide analogs ATP-gamma-S or AMP-PNP, suggesting that ATP hydrolysis was required for the endonuclease reaction. Furthermore, although ATP was the only cofactor which would support the trs endonuclease activity of Rep78, Rep68 nuclease activity was seen in the presence of several other nucleotide cofactors, including CTP, GTP, and UTP.  相似文献   

20.
An amino acid motif was identified that consists of the sequence HisHydrHisHydrHydrHydr (Hydr--bulky hydrophobic residue) and is conserved in two vast classes of proteins, one of which is involved in initiation and termination of rolling circle DNA replication, or RCR (Rep proteins), and the other in mobilization (conjugal transfer) of plasmid DNA (Mob proteins). Based on analogies with metalloenzymes, it is hypothesized that the two conserved His residues in this motif may be involved in metal ion coordination required for the activity of the Rep and Mob proteins. Rep proteins contained two additional conserved motifs, one of which was located upstream, and the other downstream from the 'two His' motif. The C-terminal motif encompassed the Tyr residue(s) forming the covalent link with nicked DNA. Mob proteins were characterized by the opposite orientation of the conserved motifs, with the (putative) DNA-linking Tyr being located near their N-termini. Both Rep and Mob protein classes further split into several distinct families. Although it was not possible to find a motif or pattern that would be unique for the entire Rep or Mob class, unique patterns were derived for large subsets of the proteins of each class. These observations allowed the prediction of the amino acid residues involved in DNA nicking, which is required for the initiation of RCR or conjugal transfer of single-stranded (ss) DNA, in Rep and Mob proteins encoded by a number of replicons of highly diverse size, structure and origin. It is conjectured that recombination has played a major part in the dissemination of genes encoding related Rep or Mob proteins among the replicons exploiting RCR. It is speculated that the eucaryotic small ssDNA replicons encoding proteins with the conserved RCR motifs and replicating via RCR-related mechanisms, such as geminiviruses and parvoviruses, may have evolved from eubacterial replicons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号