首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In Ypthima multistriata Butler (Lepidoptera: Nymphalidae), there are univoltine and bivoltine populations in adjacent areas with similar climatic conditions. A previous study revealed that larvae of both univoltine and bivoltine populations diapause under a constant short day (i.e., a constant short light period; L13:D11), but not under a constant long‐day condition (L16:D8). However, in both types of populations, adults of an overwintering generation appear and oviposit in June and soon thereafter larvae hatch. Therefore, the younger larvae (at least the first instars) of both types of populations experience a long day; nevertheless, the larvae of univoltine populations diapause in nature. To resolve this inconsistency, we set up two hypotheses: (1) the photosensitive stage of larvae is the second instar or later, and (2) the photosensitive stage of univoltine populations is later than that of bivoltine populations. To test these hypotheses, we performed rearing experiments with two univoltine populations and two bivoltine ones. The results indicated that the photosensitive stage was the second or third instar and that the photosensitive stage was later in one univoltine population than in the two bivoltine populations. Larvae of the other univoltine population diapaused under all conditions. The former result supports our hypothesis, and the latter result indicates that the response to photoperiod is different among univoltine populations. In addition, larval development was slower in one univoltine population than in the bivoltine populations, which also delays the timing of the diapause decision in this univoltine population. Larvae that experienced a long day during the first and middle instars but experienced a short day at the end of their larval stage developed faster than larvae that experienced a constant long day. This may be an adaptation to enable emergence before the start of a cold season that is unsuitable for reproduction.  相似文献   

2.
The life-history patterns of four Hydropsyche species (Trichoptera: Hydropsychidae) found in the Credit and Humber Rivers of southern Ontario were investigated through rearing studies, larval and adult collections, and analyses of densities and mortality of field populations of pupae. Hydropsyche slossonae was univoltine but was probably capable of producing a second generation under favourable conditions at the warmest station at which it occurred. Hydropsyche sparna was partially bivoltine at upstream stations and bivoltine at downstream stations. At downstream stations, the common species were Hydropsyche bronta . which was trivoltine. and Hydropsyche morosa , which was bivoltine. Hydropsyche sparna, H. bronta and H. morosa all exhibited a split-cohort development, in which not all of the summer-produced larvae completed development, pupated and emerged before the end of the growing season. Overwintering populations consisted of young larvae that had hatched from eggs laid by adults of the previous generation. Analysis of the temporal changes in the densities of living and dead pupae provided a reliable way to separate overwintering and spring- and summer-produced generations.  相似文献   

3.
Summary The mechanisms and adaptations involved in the obligate third instar larval diapause of Colias alexandra, a native Rocky Mountain and intermountain region butterfly, are examined. Generally univoltine throughout its distribution, scattered, isolated bivoltine populations occur. Factors influencing continuous development were investigated under laboratory conditions on a single generation of offspring from a univoltine population each year from 1976–1979. If exposed to mean temperatures >24°C during the second instar, a significant number of larvae fail to diapause. These results are interpreted in the context of the actual environmental conditions experienced by the univoltine source population and a bivoltine population. A high degree of individual variability in response to continuous development conditions is shown. Variation in certainty of diapause, within an originally univoltine population, could be the evolutionary starting point for evolving a genuine multivoltine cueing system and provide the mechanism for ecological range expansion.  相似文献   

4.
Cannibalism plays a major role in population regulation in Tribolium confusum, accounting for up to tenfold differences in population size between different genetic strains. I characterized the within- and between-strain genetic variation for cannibalism using standard quantitative-genetic methods. The four laboratory strains studied have similar birth and death rates but differ in their strain-specific cannibalistic tendencies. The cannibalism rates of the strains were stable for more than 60 generations of laboratory husbandry. I found considerable genetic variation for cannibalism within each strain. A genetic analysis of the between-strain differences in each of three types of cannibalism (larvae eating eggs, adults eating eggs, and adults eating pupae) showed that all three cannibalism pathways are autosomally inherited and exhibit minor degrees of dominance. Adult cannibalism of eggs and larval cannibalism of eggs appear to be genetically correlated. The differences between the “high” and “low” cannibalism strains appear to be polygenic for two kinds of cannibalism, larvae eating eggs and adults eating pupae. However, strain differences in adult cannibalism of eggs may be due to only two loci. The stability of the between-strain differences for more than 60 generations, the additive nature of inheritance, and the demonstration of considerable within-strain genetic variation suggest that cannibalism may be selectively neutral or under stabilizing selection with many adaptive peaks.  相似文献   

5.
Selection for univoltine and bivoltine life cycles in insects under resource-limited but favourable temperature conditions is analyzed with a difference equation model including density-dependent population dynamics based on the conceptual framework of an evolutionarily stable strategy. The model predicts that the bivoltine type can spread in a univoltine population when the fraction of density-independent rate of annual increase by producing a second generation exceeds the survival rate during diapause of the univoltine type, but monopoly of the bivoltine type is not possible unless it attains an equilibrium population density exceeding that of the univoltine type. The applicability of the model prediction in explaining the occurrence of a partial bivoltine cycle in predominantly univoltine population in the temperate zones is discussed.  相似文献   

6.
ABSTRACT.
  • 1 Sweden has two disjunct populations of the speckled wood butterfly, Pararge aegeria L. The southern population has two generations per year but the central Swedish population is univoltine. When rearing larvae from central Sweden under normal photoperiodic conditions but at temperatures slightly above the ambient, 42% of the larvae developed directly and produced a second generation of adults the same summer. The egg—larval development time of the directly developing individuals was about 40 days, whereas that of the individuals developing along the univoltine pathway was about 100 days.
  • 2 Larvae of the central Swedish population normally aestivate during part of the summer even though abundant food is available. In the closely related Lasiommata petropolitana F., which is the only Swedish satyrid that overwinters in the pupal stage besides P.aegeria, larvae do not aestivate, indicating that there does not seem to be any obligatory association between pupal hibernation and larval aestivation.
  • 3 Development rates of aestivating and directly developing P.aegeria are equal up to the third larval instar. During the third and fourth instars, however, the development rate of aestivating individuals is retarded and females also have an additional fifth instar.
  • 4 Since the central Swedish P.aegeria have the capacity to develop directly, and the southern Swedish ones have the capacity to aestivate, the evidence indicates that the outcome of the cost/benefit balance of univoltine versus bivoltine development differs between the two areas.
  相似文献   

7.
The possible influences of life history and habitat characteristics on the evolution of semelparity and cannibalism in the hump earwigAnechura harmandi were studied. This species is univoltine and overwinters as an adult. Females laid single egg-batches during winter in nests under stones at a riverside in a valley. They took care of the eggs which hatched in early spring and the offspring ate their mother before dispersing. The valley was sometimes flooded in summer. Nymphs emerged as adults and dispersed to elsewhere before the rainy season arrived. They returned to the riverside after the rainy season. The flooding and/or summer heat seemed to be the selective force for the evolution of dispersal behavior and semelparity in this species. The cannibalism of the female parent by her offspring seemed to have readily evolved after the evolution of semelparity. The unfavorable environmental conditions seemed to have a large effect on the evolution of semelparity and cannibalism in this species.  相似文献   

8.
  • 1 Coastal Californian Pieris napi are facultatively bivoltine, with two seasonal phenotypes, whereas inland populations from the Inner Coast Ranges and Sierra Nevada are univoltine and monophenic.
  • 2 When reared under continuous light at 25d̀C both coastal and inland stocks produce about 50% diapause pupae, which give rise to vernal-phenotype adults. Non-diapause pupae of all stocks give rise to summer-phenotype adults, even though this phenotype does not exist in the wild in univoltine populations.
  • 3 Univoltinism, which implies developmental suppression of the summer phenotype, is interpreted as a derivative from multivoltinism and an adaptation to host plant phenology.
  相似文献   

9.
The southwestern corn borer,Diatraea grandiosella Dyar, is a subtropical insect whose range has expanded northward within this century. Geographic variation exists between populations at the extremes of the range for a suite of morphological and behavioral characters, including cannibalism. Laboratory colonies established from a Missouri population (37°N lat.) with a high cannibalism rate and a Mexican population (19° N lat.) with a low cannibalism rate were used to examine the genetic basis of cannibalism by means of a controlled breeding design. When larvae were held in pairs on artificial diet in 30 ml plastic cups at 30° C 16L:8D, the highest incidence of cannibalism in both Missouri and Mexican populations was found in larvae 15 to 18 days-of-age (5th and 6th instars). Under these conditions, cannibalism was expressed in 33% of the pairs formed from Missouri larvae and 11% of the pairs formed from Mexican larvae. First and second generation crosses between Missouri and Mexican populations showed an intermediate level of cannibalism, whereas backcrosses to the parental generations showed a regression to the parental phenotypes. These results indicate that cannibalism is under additive genetic control. Larvae from the Missouri parental population were more likely to consume their victim (i.e., cannibalize) once intraspecific killing had occurred than were larvae from the Mexican parental population or from any of the crosses, and female larvae were cannibals more often than were males. Under the conditions employed, no advantage was detected for cannibalism over instraspecific killing for larval weight gain or growth rate.  相似文献   

10.
Taxonomic confusion exists in several sibling species groups. The Polyommatus coridon species complex (Chalk Hill Blues) serves as a model group of sibling species in which genetic analyses provide suitable means for taxonomic clarification. We studied the allozyme patterns of the two described bivoltine species of this complex, Polyommatus hispana and Polyommatus slovacus, and compared them to the two genetic lineages of the univoltine P. coridon. P. hispana is well distinguished from P. coridon (genetic distance: 0.081), and most probably is a sibling species that has evolved during glacial isolation on the Iberian Peninsula. P. slovacus is genetically indistinguishable from the eastern, Pontic–Mediterranean lineage of P. coridon; therefore we suggest that it represents a local bivoltine population only. Since the spring generation of P. slovacus was much less common than the summer generation and showed less genetic diversity, it is probable that uni-/bivoltinism is a dimorphism affecting only part of the whole population. We suggest that the higher genetic diversity of the second generation may be a consequence of gene flow from adjacent single-brooded populations.  相似文献   

11.
李哲  李典谟  龚治  谢宝瑜 《昆虫知识》2006,43(5):617-620
对棉铃虫Helicoverpa armigera(Hübner)的同类相残进行行为学观测,以分析体重在胜负中作用,以及不同寄主植物情况下,同类相残导致的数量变化。结果表明:棉铃虫同类相残包括试探性攻击、反击、追击、嘶咬、缠绕、取食等过程,其中能否成功缠绕对方是成功的关键。体重在同类相残过程中起到重要的作用,同一龄期,体重大的个体获胜可能性显著大于体重较小的个体。寄主植物的营养状况对同类相残有着显著影响,不适宜寄主植物环境下,同类相残在低龄期即可降低种群数量。  相似文献   

12.
Summary Intraspecific predation is taxonomically widespread, but few species routinely prey on conspecifics. This is surprising as conspecifics could be a valuable resource for animals limited by food. A potential cost of cannibalism that has been largely unexplored is that it may enhance the risk of acquiring debilitating pathogens or toxins from conspecifics. We examined how pathogens affect variation in the incidence of cannibalism in tiger salamander larvae (Ambystoma tigrinum nebulosum), which occur as two environmentally-induced morphs, typicals and cannibals. Salamanders from one population were more likely than those in another to develop into cannibals, even when reared under identical conditions. Variation in the propensity to become a cannibal may be caused by variation in pathogen density. In the population with cannibals at low frequency, bacterial blooms in late summer correlated with massive die-offs of salamanders. The frequency of cannibals correlated significantly negatively with bacterial density in ten different natural lakes. In the laboratory, cannibals exposed to a diseased conspecific always preyed on the sick animal. As a result, cannibals wre more likely to acquire and die from disease than were typicals that were similarly exposed, or cannibals that were exposed to healthy conspecifics. Since conspecifics often share lethal pathogens, enhanced risk of disease may explain why cannibalism is generally infrequent. Pathogens may constrain not only the tendency to be behaviorally cannibalistic, but also the propensity to develop specialized cannibal morphologies.  相似文献   

13.
Using field and laboratory observations and experiments over 3 years, I investigated whether reproductive trade-offs shape individual life histories in two natural populations of the water strider, Aquarius remigis, in which univoltine and bivoltine life cycles coexist. Both later eclosion dates and food shortages, even after adult eclosion, induced diapause in females, thus deferring reproduction to the following spring. Adult body size was positively affected by food availability during juvenile development. Higher food levels also increased the reproductive output of females, but not their longevity or oviposition period. When compared to spring breeders (univoltine life cycle), direct (summer) breeders (bivoltine life cycle) experienced reduced lifetime egg numbers and longevity, as well as reduced survivorship of their second-summer-generation offspring; these reproductive costs offset, at least in part, the advantage in non-decreasing populations of having two generations per year. Fecundity was correlated with body size, and among summer-generation females direct breeders were larger than non-breeders. The time remaining before the onset of winter and/or the time since adult eclosion augmented cumulative energy uptake, and consequently the lipid reserves and winter survival probability of non-breeding (diapausing) summer adults approaching hibernation. Overwintered spring reproductives died at faster rates than non-reproductive summer individuals despite greater food availability in spring, indicating a mortality cost of reproduction. Body length correlated with absolute and not with proportional lipid content but showed no consistent relationship with survivorship in the field. These results are in agreement with current theory on the evolution of insect voltinism patterns, and further indicate high degrees of life history flexibility (phenotypic plasticity) in the study populations in response to variable environmental factors (notably photoperiod and food availability). This may be related to their location in a geographic transition zone from uni- to bivoltine life cycles.  相似文献   

14.
1. Cannibalism is considered an adaptive foraging strategy for animals of various trophic positions, including carnivores. However, previous studies on wolf spiders have questioned the high nutritional value of cannibalism. We therefore analysed two different aspects of nutritional quality of conspecifics in the wolf spider Pardosaprativaga: their value for survival, growth and development; and the growth efficiency of feeding on conspecifics. We also measured the propensity for cannibalistic attacks and the consumption rate of conspecifics in an experiment where hunger level and nutrient balance were manipulated. In all experiments, cannibalism was compared with predation on fruit flies as control prey. 2. The growth experiment gave ambiguous results regarding the nutritional quality of conspecifics. Spiders on pure cannibalistic diets split into two distinct groups, one performing much better and the other much worse than spiders on fruit fly diets. We discuss the possibility that the population is dimorphic in its cannibalistic propensity, with the latter group of individuals showing a high level of inhibition against cannibalistic attacks in spite of a high nutritional value of cannibalism. 3. The food utilization experiment confirmed the high nutritional quality of conspecifics, as cannibalistic spiders had the same growth rate as spiders fed insect prey in spite of a much lower consumption rate. 4. Inhibition against cannibalistic attacks was demonstrated in medium-sized juveniles: only half of the spiders attacked a prescribed victim of 50% the size of their opponents, and the latency for those that did attack was more than half an hour, compared with a few minutes for spiders fed fruit flies. 5. Nutrient-imbalanced spiders utilized an alternative insect diet less efficiently than balanced spiders, whereas no difference was present in efficiency of utilizing conspecifics. This result indicates that spiders can remedy at least part of a nutrient imbalance through cannibalism. 6. As spiders can escape nutritional imbalance as well as restore energy reserves through cannibalism, we predicted both nutrient imbalance and hunger to stimulate cannibalism. This prediction was confirmed only with respect to hunger. Nutrient-imbalanced spiders had reduced cannibalistic consumption, perhaps due to lowered predatory aggressiveness as a result of bad condition.  相似文献   

15.
Animal personalities (e.g. consistent across‐context behavioural differences between individuals) can lead to differences in mate choice. However, evidence for this link remains limited. Pre‐mating sexual cannibalism can be a behavioural syndrome (i.e. a suboptimal personality) in which adaptive female aggression towards heterospecific prey spills over on non‐adaptive aggression towards courting males, independently of the female mating or feeding status (i.e. the ‘aggressive spillover hypothesis’, ASH). On the other hand, sexual cannibalism can also be a form of mate choice by which females selectively kill or mate with males depending on the male phenotype. We introduce the hypothesis that the most aggressive females in the population will not only attack males more frequently, but will be less likely to impose sexual selection on males through sexual cannibalism. Assuming that in a field common garden experiment in which females were fed ad libitum the rate of weight gain by a female may reflect her voracity or aggressiveness, we show that in the cannibalistic burrowing wolf spider Lycosa hispanica (formerly L. tarantula), voracity towards heterospecific prey predicts a female's tendency towards sexual cannibalism. Unmated females with higher weight gains were more cannibalistic and attacked males regardless of the male phenotype. On the other hand, females that were less voracious tended to be less cannibalistic, and when they did kill a male, they were selective, killing males in poorer condition and mating with those in better condition. Our results demonstrate that females with different phenotypes (growth rates) differently imposed selection on male condition, tentatively supporting the hypothesis that female aggression levels can spill over on sexual selection through sexual cannibalism.  相似文献   

16.
The bivoltine European map butterfly (Araschnia levana) displays seasonal polyphenism characterized by the formation of two remarkably distinct dorsal wing phenotypes: The spring generation (A. levana levana) is predominantly orange with black spots and develops from diapause pupae, whereas the summer generation (A. levana prorsa) has black, white, and orange bands and develops from subitaneous pupae. The choice between spring or summer imagoes is regulated by the photoperiod during larval and prepupal development, but polyphenism in the larvae has not been investigated before. Recently, it has been found that the prepupae of A. levana display differences in immunity‐related gene expression, so we tested whether larvae destined to become spring (short‐day) or summer (long‐day) morphs also display differences in innate immunity. We measured larval survival following the injection of a bacterial entomopathogen (Pseudomonas entomophila), the antimicrobial activity in their hemolymph and the induced expression of selected genes encoding antimicrobial peptides (AMPs). Larvae of the short‐day generation died significantly later, exhibited higher antibacterial activity in the hemolymph, and displayed higher induced expression levels of AMPs than those of the long‐day generation. Our study expands the seasonal polyphenism of A. levana beyond the morphologically distinct spring and summer imagoes to include immunological larval polyphenism that reveals the photoperiodic modulation of immunity. This may reflect life‐history traits that manifest as trade‐offs between immunity and fecundity.  相似文献   

17.
Theoretically, asymmetric gene flow along an environmental gradient can limit species range expansion by keeping peripheral populations from locally adapting. However, few empirical studies have examined this potentially fundamental evolutionary mechanism. We address this possibility in the cricket Allonemobius socius, which exist along a season‐length gradient where the probability of producing a single generation per year (univoltinism) increases with latitude. As the probability of univoltinism increases northwards, populations are expected to hedge their bets by producing a greater proportion of diapause eggs when exposed to a mild diapause cue. However, gene flow from southern populations may disrupt local adaptation in the north by reducing the proportion of diapause eggs (expected to be 100% in pure univoltine environments). This may limit range expansion along the northern periphery where A. socius compete with A. fasciatus, a sister species that exhibits an invariant diapause‐only egg‐laying strategy. To assess the potential for range limitation, we examined diapause incidence (the proportion of diapause eggs produced under diapause conditions), gene flow symmetry and population structure across nine A. socius populations. We found that gene flow was asymmetric and biased northwards towards the periphery. Furthermore, peripheral populations that inhabited pure univoltine environments produced numerous nondiapause eggs (a southern, bivoltine diapause phenotype), which we assume to be a suboptimal phenotype. These patterns suggest that asymmetric gene flow along the gradient constrains adaptation in peripheral populations, potentially constraining species range expansion.  相似文献   

18.
Filial cannibalism is widespread in a variety of animal species and has been generally accepted as an adaptive behavior. Within a population, some individuals adopt filial cannibalism and others do not, in spite of its adaptiveness. There is little knowledge of how such a polymorphic trait is maintained in nature. To understand the underlying mechanism of cannibalistic polymorphism, we conducted a long-term field study that involved monitoring of the reproductive experience of marked individuals in the paternal mouthbrooding cardinalfish, Apogon doederleini, in which parental males sometimes cannibalize their entire broods. We assumed that filial cannibalism can be described as one of three possible strategies: alternative, mixed or conditional. Individual cannibalistic tendencies, represented by the number of entire brood cannibalism performed by each individual in one breeding season, showed a random distribution within the study population. Moreover, the individual cannibalistic tendencies were not consistent between two successive seasons. These results suggest that filial cannibalism is phenotypically plastic, thus eliminating the alternative strategy as a possible mechanism. Comparison of variance in reproductive success between cannibals and non-cannibals showed that observations were not in accordance with those expected in the case that males adopt filial cannibalism stochastically, that is, as a mixed strategy. Our previous studies have indicated that filial cannibalism is affected by male status, such as age, somatic condition and mate availability. In conclusion, filial cannibalism by male A. doederleini is carried out as a conditional strategy.  相似文献   

19.
Abstract.  1. Specialization on ephemeral resources (e.g. new leaves) should produce large annual variation in herbivore population size when the timing of availability of those resources is unpredictable. Despite considerable evidence for impacts of synchrony with budburst on survival of larval Lepidoptera, previous studies of adult Geometridae and Noctuidae found no correlations between insect phenology and population variability.
2. We surveyed larval Lepidoptera feeding on Quercus alba and Q. velutina in Missouri from 1993 to 2003 and examined population variability, measured as the coefficient of variation of population density (CV), in a subset of abundant species. We compared CV values among species whose larvae feed only in spring, early summer, mid-summer, late summer, or all season. We predicted that univoltine species whose larvae eclose and complete development in spring during leaf expansion would have higher variability than species feeding later in the season, having multiple generations, or having longer development times.
3. As predicted and consistent with hypotheses, spring-feeding species had CV values 32% higher than species feeding in summer months. Coefficients of variation were also 34% higher in leaf-rolling and mining guilds compared with free-feeders, suggesting that mobile species may compensate for asynchrony with budburst by dispersing to higher quality plants or plant parts. Multivoltine species, however, did not differ from univoltine species in population variability.
4. Our results suggest that asynchrony with plant phenology and factors that might exacerbate it, such as climate change, will have the largest impacts on the dynamics of spring-feeding Lepidoptera, particularly species with limited mobility.  相似文献   

20.
Cannibalism, the killing and consumption of conspecifics, can even occur in insect species typically considered to be non‐carnivorous. Of particular interest is the cannibalism of parasitoid‐attacked conspecifics, which could reduce parasitism levels in subsequent generations for that conspecific population. This study reports on the occurrence and some of the consequences of cannibalism in parasitoid‐attacked obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). We show that larvae of C. rosaceana, which is considered to be an herbivorous caterpillar species, did not prey upon live conspecifics, but readily consumed conspecifics attacked by Habrobracon gelechiae Ashmead (Hymenoptera: Braconidae). Further examination found that C. rosaceana larvae feeding on parasitoid‐attacked conspecifics, since their fourth instar, suffered a higher mortality and reduction in body size than those fed on plant material only. The cannibalism of attacked conspecifics did not appear to offer any nutrient benefits for the cannibal. To our best knowledge, this is the first empirical example of the occurrence and some of the consequences of cannibalism by a non‐carnivorous insect on its parasitoid‐attacked conspecifics. We discuss the adaptive significance of such cannibalism on parasitoid‐attacked conspecifics with respect to a trans‐generational fitness gain for the population through the killing of the parasitoids, thereby reducing parasitism in subsequent generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号