首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Escherichia coli, the coordinate action of two antioxidant enzymes, superoxide dismutase and hydroperoxidase (catalase), protect the cell from the deleterious effects of oxyradicals generated during normal aerobic respiration. To evaluate the relative importance of these two classes of enzymes, strains of E. coli deficient in superoxide dismutase and (or) hydroperoxidase were constructed by generalized transduction and their physiological responses to oxygen and oxidant stress examined. Superoxide dismutase was found to be more important than hydroperoxidase in preventing oxygen-dependent growth inhibition and mutagenesis, and in reducing sensitivity to redox-active compounds known to generate the superoxide anion. However, both types of enzymes were required for an effective defense against chemical oxidants that generate superoxide radicals and hydrogen peroxide.  相似文献   

2.
Plants respond to the attack of pathogens with the oxidative burst, a production of reactive oxygen species (ROS). In this work a cell culture suspension of Phaseolus vulgaris was used to investigate the oxidative burst triggered by a conidia suspension of different races of Colletotrichum lindemuthianum. As a defence response of the cells a two-phase peak was observed with all used races of Colletotrichum lindemuthianum, varying only in the produced amounts of hydrogen peroxide. Findings with additives such as superoxide dismutase (SOD), diphenyleneiodonium (DPI) and catalase gave rise to the conclusion that more superoxide radicals were produced than be detectable with Amplex Red as hydrogen peroxide. It is assumed that the conversion of the superoxide radical is spontaneous and not driven via a cell-derived superoxide dismutase. The addition of low-molecular cell wall components (ergosterol, glucosamine, galactosamine) showed clearly that compounds like this act as elicitors and thus are involved in triggering the burst. Furthermore, an evaluation of the metabolizing capacities of hydrogen peroxide of the suspension culture cells revealed the enormous capacity of the cells to detoxify this ROS.  相似文献   

3.
Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer’s disease.  相似文献   

4.
Cytotoxicity resulting from the interaction of fluorescent light from a flow hood with Hepes-buffered cell culture medium at room temperature was demonstrated. Toxicity was prevented by keeping both cells (V79 Chinese hamster) and medium shielded from direct fluorescent light ("dark conditions") or by supplementing the medium with 10 micrograms/ml catalase; this suggests that extracellular hydrogen peroxide is a major cause of the lethal effect under "lighted conditions." No sensitization resulted from the exposure of cells in a sodium bicarbonate (SBC)-buffered medium to fluorescent light, nor in a catalase supplemented SBC-buffered medium. The Hepes/light reaction during routine cell manipulations presensitized cells to hypothermia damage in the dark with the presensitization being more severe for 5 than for 10 degrees C hypothermic exposure. Presensitization was prevented by performing the complete experiment under dark conditions or by supplementing the medium with 10 micrograms/ml catalase. However, catalase did not improve the hypothermic survival when experiments were performed under dark conditions. Hence, 10 micrograms/ml catalase does not protect cells from hypothermic (5 and 10 degrees C) damage per se, but rather from Hepes/light sublethal damage which interacts with hypothermic sublethal damage to result in lethal lesions. Additionally, under dark conditions, superoxide dismutase (SOD), allopurinol, catalase plus SOD, DMSO, or mannitol did not improve survival when present during hypothermic storage, suggesting that extracellular superoxide anion, hydrogen peroxide, or hydroxyl radicals are not the cause of cell killing under conditions of pure hypothermia uncomplicated by prehypothermic ischemia or hypoxia.  相似文献   

5.
Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress.  相似文献   

6.
The effects of isotretinoin (IR) and its primary metabolite (in the human), 4-oxo-isotretinoin (4-OIR or OIR), on isolated chick neural crest cells (NCC's) in culture were studied. NCC's were found to be deficient in both superoxide dismutase (SOD) and catalase, two of the enzymes known to function in the "scavenging" (dismutation) of toxic radical oxygen species (ROS) such as the superoxide anion and hydrogen peroxide. The addition of IR or OIR to the culture medium significantly depressed the viability of the NCC's when compared to untreated cells. OIR was more potent in this regard than IR. In the presence of either IR or OIR, NCC's generated superoxide anions (O2.), hydrogen peroxide (H2O2), and hydroxyl anions (OH.). OIR was again more potent. The cytotoxicity of IR or OIR was demonstrated by the "leakage" of radioactive chromium from prelabeled cells. The latter is suggestive of a primary surface membrane defect, most logically via the induction of lipid peroxides by the retinoids. The latter is accompanied by an increase in membrane permeability and porosity as evidenced by the fact that various fluorescently labeled molecules, including BSA-FITC (MW 69,000), gain entrance into the cytoplasm of the retinoid treated cells. No label was seen in the cytoplasm of similarly treated control cells. When SOD (200 units/ml) or catalase (400 units/ml) was added to the culture media of IR- or OIR-treated NCCs, cell viability was increased and the concentration of the various ROS generated was decreased. Membrane leakiness to chromium and FITC-BSA was also decreased in the presence of these enzymes. Free radicals, when not inactivated (dismutated), are known to be pathobiotic to most cells. Cell membranes are at a particular high risk from ROS which induce structural, physiological, and biochemical alterations in the cell membrane. The latter can have a negative effect on cell permeability, maintenance of normal ionic gradients, membrane enzyme activity, cell-to-cell communication, etc. Such defects can ultimately culminate in hypoplasia, aplasia, and cell necrosis. This study has shown that NCC's may be overtly sensitive to ROS, especially since these undifferentiated cells apparently lack inherent SOD and/or catalase activity. From this study it appears as if both IR and OIR perturb the normal functional state of NCC's by "triggering" the generation of ROS. This may certainly explain the teratogenicity of these drugs as related to the viability of neural crest derived ectomesenchymal cells and normal craniofacial morphogenesis.  相似文献   

7.
The effects of 1-min-long exposure to 42°C (hardening heating) on heat tolerance and dynamics of ROS (superoxide anion radical and hydrogen peroxide) generation were investigated in the wheat (Triticum aestivum L., cv. Elegiya) seedlings. During the initial 5–30 min after the onset of hyperthermia, ROS generation by roots and shoots was intensified, and superoxide dismutase (SOD) was activated. During the first hour after hardening heating, the seedling tolerance to injurious 10-min-long treatment with high temperature (46°C) decreased but subsequently it gradually rose, reaching maximum in 24 h. Transient accumulation of hydrogen peroxide induced by hardening was suppressed by seedling treatment with H2O2 scavenger dimethylthiourea, by inhibitors of NADPH-oxidase (imidazole) and DDC (sodium diethyldithiocarbamate). These compounds considerably reduced favorable effect of hardening on seedling heat tolerance. It was concluded that generation of a signal inducing the development of heat tolerance depended on NADPH-oxidase producing superoxide anion radical and SOD that transforms it into hydrogen peroxide (more stable ROS performing signaling functions).  相似文献   

8.
Reactive Oxygen Species (ROS) are quintessential inflammatory compounds with oxidizing behavior. We have successfully developed a micellar system with responsiveness at the same time to two of the most important ROS: superoxide and hydrogen peroxide. This allows for an effective and selective capture of the two compounds and, in perspective, for inflammation-responsive drug release. The system is composed of superoxide dismutase (SOD) conjugated to oxidation-sensitive amphiphilic polysulfide/PEG block copolymers; the conjugate combines the SOD reactivity toward superoxide with that of hydrophobic thioethers toward hydrogen peroxide. Specifically, here we have demonstrated how this hybrid system can efficiently convert superoxide into hydrogen peroxide, which is then "mopped-up" by the polysulfides: this modus operandi is functionally analogous to the SOD/catalase combination, with the advantages of (a) being based on a single and more stable system, and (b) a higher overall efficiency due the physical proximity of the two ROS-reactive centers (SOD and polysulfides).  相似文献   

9.
Superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) are important enzymes involved in protection of the cell from harmful effects of oxidative degradation. The respective substrates for these enzymes, superoxide anion and hydrogen peroxide, can be generated within the cell either by normal metabolism or by ionizing radiation. The hypothesis that the inherent radiosensitivity associated with the human autosomal recessive disease Ataxia telangiectasia is due to decreased levels of SOD and/or catalase was tested. The results suggest that fibroblast cells derived from ataxia patients are normal with respect to these two enzymes.  相似文献   

10.
Nitrofurantoin, misonidazole, and metronidazole were reduced to their corresponding nitro anion radicals by ascorbate in anaerobic solutions at high pH. The nitrofurantoin anion radical could be detected at neutral pH. In neutral solutions, the nitro anion radicals of misonidazole and metronidazole were too unstable to be observed by electron spin resonance spectroscopy. At neutral pH, solutions containing ascorbate, nitrofurantoin, or misonidazole consumed oxygen. The addition of superoxide dismutase, catalase, or both superoxide dismutase and catalase decreased the rate of oxygen consumption. These results show that nitro anion radicals are formed by reduction with ascorbate, and superoxide anion radical and hydrogen peroxide are produced by reactions of these radicals with oxygen.  相似文献   

11.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

12.
鲜切加工加速荸荠组织衰老与H2O2累积的关系   总被引:12,自引:0,他引:12  
以荸荠为材料,研究了鲜切加工加速组织衰老与活性氧代谢的关系.结果表明:鲜切加工提高了荸荠切片抗氧化酶(超氧化物歧化酶、抗坏血酸-过氧化物酶和过氧化氢酶)的活性;但同时明显刺激了O2-产生,促进了H2O2累积,加速了抗坏血酸在贮藏后期的损失,加强了膜脂过氧化作用和增加了电解质渗出率.统计分析表明H2O2含量、丙二醛含量、电解质渗出率三者之间存在正相关性.H2O2组织定位结果也证实鲜切加速组织衰老与H2O2累积密切相关.完整荸荠组织O2-产生比较平稳,抗氧化酶活性维持稳定,H2O2未有明显累积.  相似文献   

13.
We analyzed the production of reactive oxygen species (ROS) and of detoxifying enzymes and enzymes of the ascorbate (ASC) acid cycle in avocado fruit (Pesea Americana Mill cv Hass) in response to wounding. The levels of superoxide anion (O2 ?), hydroxyl radicals (OH.) and hydrogen peroxide (H2O2) increased at 15 min and 2 and 15 h post-wounding. Peroxidase (POD) activity had increased to high levels 24 h after wounding; in contrast, catalase and superoxide dismutase (SOD) levels hat decreased significantly at 24 h post-treatment. Basic POD was the major POD form induced, and the levels of at least three apoplastic POD isozymes –increased following wounding. Using specific inhibitors, we characterized one MnSOD and two CuZnSOD isozymes. CuZnSOD activities decreased notably 12 h after treatment. The activities of dehydroascorbate reductase and glutathione reductase increased dramatically following the wounding treatment, possibly as a means to compensate for the redox changes due to ROS production.  相似文献   

14.
Using a spin-trapping technique, we have examined free-radical formation by mitomycin C and its analogs, BMY 25282 and BMY 25067, in rat cardiac microsomes and isolated perfused rat hearts. All three drugs stimulated 2--4-fold OH radical formation in cardiac microsomes which was inhibited by SOD and catalase. Superoxide anion radical was also detected in the presence of diethylenetetraaminopentaacetic acid. Addition of DMSO yielded methyl radicals, thus indicating the production of free OH under these conditions. Similar stimulation of OH formation (2--3-fold) in the perfusates from rat hearts was detected with all three drugs. Perfusion with catalase (550 U/ml) completely suppressed the OH signal both in the presence and absence of the drugs, thus suggesting the intermediacy of hydrogen peroxide. However, BMY 25067-induced OH formation was more sensitive to inhibition by superoxide dismutase (SOD) and the iron chelator ICRF-187. Perfusion with DMSO produced methyl radicals at the expense of OH in the presence of all three drugs. SOD and catalase inhibited DMPO-OH signals, indicating that most of the OH formation was extracellular in this setting. While mitomycin C and BMY 25067 (up to 10 microM) did not affect the heart rate, perfusion with 10 microM BMY 25282 caused acute arrhythmia and cardiac standstill within 20 min. An initial surge in OH formation (2-fold) accompanied this cardiotoxic effect. Both the arrhythmia and the free radical signal were partially blocked by SOD, catalase and ICRF-187, indicating that iron-dependent oxygen radical formation from BMY-25282 (and possibly other compounds) is involved, in part, in inducing toxic manifestations in the rat heart and possibly in clinic.  相似文献   

15.
Transformed fibroblasts generate extracellular superoxide anions through the recently identified membrane-associated NADPH oxidase. These cell-derived superoxide anions exhibit signaling functions such as regulation of proliferation and maintenance of the transformed state. Their dismutation product hydrogen peroxide regulates the intracellular level of catalase, whose activity has been observed to be upregulated in certain transformed cells. After glutathione depletion, transformed cell-derived reactive oxygen species (ROS) exhibit apoptosis-inducing potential through the metal-catalyzed Haber-Weiss reaction. Moreover, transformed cell-derived ROS represent key elements for selective and efficient apoptosis induction by natural antitumor systems (such as fibroblasts, granulocytes and macrophages). These effector cells release peroxidase, which utilizes target cell-derived hydrogen peroxide for HOCl synthesis. In a second step, HOCl interacts with target cell-derived superoxide anions and forms apoptosis-inducing hydroxyl radicals. In a parallel signaling pathway, effector cell-derived NO interacts with target cell-derived superoxide anions and generates the apoptosis inducer peroxynitrite. Therefore, transformed cell-derived ROS determine transformed cells as selective targets for induction of apoptosis by these effector systems. It is therefore proposed that transformed cell derived ROS interact with associated cells to exhibit directed and specific signaling functions, some of which are beneficial and some of which can become detrimental to transformed cells.  相似文献   

16.
Chattonella is one of the most toxic red tide phytoplankton and causes severe damage to fish farming. Recent studies demonstrated that Chattonella sp. generates superoxide and hydroxyl radicals, which may be responsible for the toxicity of this plankton. However, little is known about the mechanism of the production of oxygen radicals by Chattonella, and the role of oxygen radicals in Chattonella themselves is also unclear. In this study, we found that superoxide dismutase (SOD) and catalase inhibited the growth of Chattonella marina concomitant with their morphological changes. In the presence of these enzymes, the shape of vegetative C. marina cells changed from spindle to round. Furthermore, the generation of oxygen radicals by C. marina depended on the growth phase; the rate of superoxide and hydrogen peroxide generation was the highest during exponentially growing phase and subsequently decreased to one-fifth of the maximal level in the stationary growth phase. These results suggest that oxygen radicals generated by C. marina play an essential role in their own survival, especially in cell division.  相似文献   

17.
The effect of hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) on the heat resistance of wheat (Triticum aestivum L.) coleoptile cells, the formation of reactive oxygen species (ROS), and the activity of the antioxidant enzymes in them was investigated. The treatment of coleoptiles with 100 µM NaHS caused transient enhancement of the generation of the superoxide anion radical (O2 ?) and an increased hydrogen peroxide content. The activities of antioxidant enzymes—superoxide dismutase, catalase, and guaiacol peroxidase— and coleoptile resistance to damaging heat was later found to have increased. The biochemical and physiological effects of the hydrogen sulfide donor described above were inhibited by the treatment of wheat coleoptiles with the hydrogen peroxide scavenger dimethylthiourea, the NADPH oxidase inhibitor imidazole, the extracellular calcium chelator EGTA, and the phosphatidylinositol-specific phospholipase C inhibitor neomycin. A conclusion was made on the role of ROS generation, which is dependent on the activity of NADPH oxidase and calcium homeostasis, in the transduction of the H2S signal, which induces antioxidant enzymes and the development of plant cell heat resistance.  相似文献   

18.
Hou YZ  Zhao GR  Yang J  Yuan YJ  Zhu GG  Hiltunen R 《Life sciences》2004,75(14):1775-1786
Ligusticum chuanxiong and Angelica sinensis have been widely used in traditional Chinese medicine to treat some pathological settings such as atherosclerosis and hypertension. We determined the protective effect of the extract of Ligusticum chuanxiong and Angelica sinensis (ELCAS) on human umbilical vein endothelial cells (ECV304) damage induced by hydrogen peroxide. ECV304 cells were pre-treated with ELCAS and exposed to 5 mM hydrogen peroxide. The results show that ELCAS dose- and time-dependently protected ECV304 cells against hydrogen peroxide damage and suppressed the production of reactive oxygen species (ROS). The decrement of ROS may be associated with increased activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Western blot analysis revealed that ELCAS significantly increased the phosphorylation of ERK and promoted eNOS expression. These observations indicate that ELCAS protected ECV304 cells against hydrogen peroxide damage by enhancing the antioxidative ability, activating ERK and eNOS signaling pathway. Our data also provide new evidence of Ligusticum chuanxiong and Angelica sinensis in preventing both cardiovascular and cerebrovascular diseases.  相似文献   

19.
Salinity influences the agricultural production all over the world. This constrain, similar to others biotic and abiotic stresses generate the reactive oxygen species such as superoxide, hydrogen peroxide and hydroxyl radicals. In the evolution process of halophyte plants the mechanisms to detoxify ROS, such as antioxidant enzymes, have been developed. Aeluropus littoralis is a special halophyte that selected to our research, so the plants treated with NaCl at different salt concentration (0, 250, 450 and 650 mM) for a period 45 days. Leaves and roots (separately) collected and their proteins extracted for superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) activity assay. Meanwhile the electrolyte leakage of leaves analyzed and increased at 450 and 650 mM of NaCl concentrations. Superoxide dismutase and catalase showed same pattern for changing in enzymatic activities (increasing activity by salt stress in roots and decreasing in shoot at 450 and 650 mM stress), also peroxidase and ascorbate peroxidase activity almost increased in all stress conditions.  相似文献   

20.
A plant's physiology is modified simultaneously with Oomycete pathogen penetration, starting with release and accumulation of reactive oxygen species (ROS). Localisation of superoxide, hydrogen peroxide, peroxidase and variation in their activity, and the isoenzyme profile of antioxidant enzymes peroxidase (1.11.1.7), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) were studied in six genotypes of four Lactuca spp. (L. sativa, L. serriola, L. saligna and L. virosa) challenged with Bremia lactucae (race NL16). These factors were related to the differential expression of resistance during the course of 96h after inoculation (hai). Accumulation of hydrogen peroxide in infected cells together with enhanced activity of H(2)O(2)-scavenging enzymes in leaf extracts characterised resistant Lactuca spp. genotypes 6-12hai, and peaked at 48-96hai with expression of a hypersensitive reaction. Substantial changes of guaiacol peroxidase activity were detected only in the cytosolic enzyme; activities of the membrane-bound and the ion-bound enzymes were insignificant in the interactions of host genotypes and pathogen isolate examined. The most significant modifications of ROS metabolism were found in resistant L. virosa (NVRS 10.001 602), a genotype responding to pathogen ingress by a rapid and extensive hypersensitive reaction. Formation of the superoxide anion was not detected in either susceptible or resistant plants, and there was also no increase of superoxide dismutase activity or changes in its isozyme profile. The significance of precise balancing the intracellular level of hydrogen peroxide for variability of phenotypic expression of responses to B. lactucae infection in Lactuca spp. is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号