首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

2.
We studied a family in which one out of two children presented a non-salt wasting form of CAH. Genomic DNA of the patient, his brother, his parents and a normal control were digested by the Taq I and Bgl II restriction enzymes. The fragments were electrophoresed, transferred onto a nitrocellulose membrane and hybridized with two specific probes: pC21a for the CYP21 genes and pAT-A for the C4 genes. We performed simultaneous RFLP analyses of the CYP21 and C4 genes and determined the relative hybridization intensity of the genes using scanning densitometry of the X-ray films. The affected child had a CYP21B gene conversion in the CYP21A pseudogene on one chromosome inherited from his mother and a mutated CYP21B gene on the second chromosome inherited from his father. The second maternal chromosome, inherited by the unaffected brother, presented an unusual CYP21A gene deletion without a C4A or C4B gene deletion. Although CYP21A is a pseudogene, this type of complete CYP21A gene deletion associated with a CYP21B gene conversion has never been previously described.  相似文献   

3.
Wang CL  Liang L  Shen Z  Zou CC  Fu JF  Dong GP 《Genomics》2011,(6):440-444
Genetic mutations have been identified in a modest proportion of patients with combined pituitary hormone deficiency (CPHD). We reported a 3-generation family consisting of 18 members, including 5 affected males (the proband, his 2 brothers, his cousin, and his maternal uncle; III1–III4, II8) suffered with CPHD. MRI of the pituitary gland showed hypoplasia of the pituitary gland in affected members. By 19 STR markers and linkage analysis, we found that the disease gene localized between the DXS987 and DXS1226 markers (LOD score = 2.408, θ = 0). All affected male patients inherited the same haplotype from the female carrier (I4). The proband's mother (II4) and her sister (II3, II6) were obligate female carriers. However, the unaffected males (II7, II9) in the family did not have this haplotype. These observations confirm a new X-linked recessive inherited disease in a Chinese family with CPHD and the pathogenic gene is mapped to Xp22.1–Xp11.  相似文献   

4.
本文应用从人类X柒色体Xp~(21)区不同部位分离得到的9种DNA探针,分析了100名正常中国人,38名DMD患者及其母亲X柒色体Xp~(21)区的14个限制性位点多态性(RSP;又称限制性片段长度多态性,RFLP)。发现正常的X染色体与携带DMD基因的X染色体Xp~(21)区的RFLP频率没有明显差别;在38例DMD患者中有7例的X染色体有DNA片段缺失;在本文分析的24例患者母杀中有17例是DMD基因携带者,她们在Xp~(21)区的RFLP均存在杂合的多态性,因此可以应用RFLP连锁分析对这些家系进行DMD的产前诊断。  相似文献   

5.
In this report we describe the use of dystrophin analysis both in the diagnosis of Duchenne muscular dystrophy (DMD) in an aborted fetus and in genetic counseling. Our consultand's initial carrier risk, as based on family history and creatine kinase determinations, was calculated as 0.6%. DNA analysis of her family (and fetus) modified this risk to 8.5%. Skeletal muscle of the 23-wk male abortus was found to be histologically indistinguishable from that of age-matched controls. However, immunoblot testing for dystrophin indicated that the fetus had indeed inherited dystrophin deficiency. The carrier risk of the consultand was thus elevated to 100%. Dystrophin assays should be employed whenever the diagnosis of fetal DMD is equivocal (e.g., cases in which a gene deletion cannot be identified). Assay results are crucial for genetic counseling for subsequent pregnancies and for studies of the early pathogenesis of muscular dystrophy.  相似文献   

6.
Familial deletion in Becker type muscular dystrophy within the pXJ region   总被引:2,自引:0,他引:2  
Summary A family of an isolated patient with Becker muscular dystrophy has been investigated by DNA analysis. Southern blotting and hybridization were performed with six probes (C7, pERT87.15, pERT87.1, pXJ1.1, pXJ2.3, 754) mapping in the Xp21 region. A deletion within the pXJ region was demonstrated in the proband, his mother and all three sisters. The segregation pattern for the restriction fragment length polymorphisms (RFLPs) observed with the pXJ probes as well as with pERT87.15, pERT87.1 and 754 probes indicates that the deletion is of grandpaternal origin.  相似文献   

7.
A recombinant chromosome in a male affected with X-linked congenital stationary night blindness (CSNB1) provides new information on the location of the CSNB1 locus. A four-generation family with five males affected with X-linked CSNB was analyzed with five polymorphic markers for four X-chromosome loci spanning the region OTC (Xp21.1) to DXS255 (Xp11.22). Four of the males inherited the same X chromosome; one male inherited a chromosome that from OTC to DXS7, inclusive, was derived from the normal X chromosome of his unaffected grandfather and that from a location between DXS7 and DXS426 proximally was derived from the chromosome carrying the CSNB1 locus. This recombinant maps the CSNB1 locus in this family to a region on the short arm of the X chromosome proximal to the DXS7 locus.  相似文献   

8.
Summary Twenty-nine deletion breakpoints were mapped in 220 kb of the DXS164 locus relative to potential exons of the Duchenne and Becker muscular dystrophy gene. Four deletion junction fragments were isolated to acquire outlying Xp21 loci on both the terminal and centromere side of the DXS164 locus. The junction loci were used for chromosome walking, searches for DNA polymorphisms, and mapping against deletion and translocation breakpoints. Forty-four unrelated deletions were analyzed using the junction loci as hybridization probes to map the endpoints between cloned Xp21 loci. DNA polymorphisms from the DXS164 and junction loci were used to follow the segregation of a mutation in a family that represents a recombinant. Both the physical and genetic data point to a very large size for this X-linked muscular dystrophy locus.  相似文献   

9.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder. Here, we report a novel mechanism for the occurrence of DMD in females. In a Vietnamese DMD girl, conventional PCR amplification analysis disclosed a deletion of exons 12–19 of the dystrophin gene on Xp21.2, with a karyotype of 46, XY. Furthermore, a novel mutation in the androgen-receptor gene on Xq11.2-q12 was identified in this girl, which led to male pseudohermaphroditism. Co-occurrence of mutations of these two genes constitutes a novel mechanism underlying female DMD.  相似文献   

10.
Physical mapping distal to the DMD locus   总被引:3,自引:0,他引:3  
We report a new locus, designated JC-1, which maps between the gene responsible for adrenal hypoplasia (AHC) and the gene that encodes glycerol kinase (GK) in Xp21.2-21.3. The probe identifying this locus was obtained by cloning the distal sequence of a junction fragment from a Duchenne muscular dystrophy (DMD) patient with a large deletion. Pulsed-field gel electrophoresis analysis shows that a region of at least 4 Mb separates the 3' end of the dystrophin gene and the closest distal marker to AHC, DXS28. This region of the human genome contains few genes whose deletion results in a clinical phenotype. JC-1 is a useful probe from which to initiate strategies directed at cloning the AHC and GK loci.  相似文献   

11.
The 33 patients suffering from the Duchenne muscular dystrophy (DMD), 7 healthy donors and a DMD risk family were studied by means of polymerase multiplex chain reaction (MPCR) with 6 oligoprimer pairs for 6 different exons of dystrophin gene. The deletions varying in sizes from 1 to 6 exons were detected in 12 out of 33 DMD patients studied (36.3%). The prenatal diagnosis of DMD was carried out by chorionic villus biopsy on the 1st trimester of pregnancy. Contrary to earlier findings, in elder brother with sever DMD manifestation, no visible deletion was detected in the DNA sample from the male foetus and thus the diagnosis of DMD in foetus was rejected. The perspectives of MPCR in pre and postnatal diagnosis of DMD are discussed.  相似文献   

12.
The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random "libraries" of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25-60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1-41, and we now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes.  相似文献   

13.
The family of a male with Duchenne muscular dystrophy (DMD) and a deletion within the dystrophin gene has been studied. Polymerase chain reaction analysis of ectopic mRNA from peripheral blood T+B lymphocytes and the use of (CA) n repeat polymorphisms in and around the deleted region showed the proband's mother to be both a germline mosaic and a somatic mosaic for the deletion seen in her son. The mutation therefore occurred as a mitotic event early in embryogenesis.  相似文献   

14.
Glycerol kinase deficiency (GKD) is an X-linked recessive trait that occurs in association with congenital adrenal hypoplasia (AH) and developmental delay with or without congenital dystrophic myopathy. Several such patients have recently been reported to have cytological deletions of chromosome region Xp21 and/or of DNA markers that map near the locus for Duchenne muscular dystrophy (DMD) in band Xp21. We have examined the initial family reported in the literature and, using prometaphase chromosome studies and Southern blot analysis with 13 different DNA probes derived from band Xp21, have found no deletions within this region of the X chromosome. When DNA samples from six other unrelated affected males were analyzed, four of them were found to have different-size deletions within Xp21. Thus, the form of GKD associated with AH and dystrophic myopathy exhibits significant genetic heterogeneity at the DNA level. No deletions were detected in two patients with isolated GK deficiency. Comparison of our molecular studies of unrelated patients with deletions of DNA segments allows us to define the region of Xp21 (between probes J-Bir and L1.4) that most likely contains the genes for GKD and AH. This location is distal to the DMD locus. The patients with progressive muscular dystrophy tended to have larger deletions that include markers known to derive from the DMD locus, while GKD/AH/dystrophic-myopathy patients without current evidence of deletion seemed to have a milder, nonprogressive form of congenital myopathy.  相似文献   

15.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive genetic disorders resulting from mutations in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central region of the gene. The remaining DMD/BMD cases show no deletions, so they cannot be easily identified by current strategies. In these DMD/BMD families, a linkage analysis that involves DNA markers of the flanking and intragenic dystrophin gene are necessary for carrier and prenatal diagnosis. We analyzed eighteen deletion-prone exons of the gene by a polymerase chain reaction (PCR) in order to characterize the molecular defects of the dystrophin gene in Korean DMD/BMD families. We also performed a linkage analysis to assess the usefulness and application of six short tandem repeat markers for molecular diagnosis in the families. We observed a deletion that eliminated the exon 50. Also, a linkage analysis in the families with six short tandem repeat (STR) markers showed heterozygosity at most of the STR markers. The haplotype analysis was useful for detecting the carrier status. This study will be helpful for a molecular diagnosis of DMD/BMD families in the Korean population.  相似文献   

16.
Summary We have isolated a random cosmid cX5 (DXS148), which maps into a small Xp21 deletion associated with Duchenne muscular dystrophy (DMD), chronic granulomatous disease (CGD), retinitis pigmentosa (RP) and McLeod syndrome. cX5 maps proximally outside several other deletions associated with DMD, glycerol kinase deficiency (GK) and adrenal hypoplasia (AHC). The following order of loci is proposed: centromere-OTC-cX5 (DXS148)-754 (DXS84)-PERT87 (DXS164)/DMD-telomere. A subclone cX5.7, isolated from this cosmid, identifies an MspI RFLP, with a minor allele frequency of 35%. This probe forms an important adjunct to the existing RFLPs for family studies in Duchenne muscular dystrophy.  相似文献   

17.
Short stature is a well-recognized feature of Duchenne muscular dystrophy, whilst it has been reported rarely in Becker muscular dystrophy (BMD). Here we report two brothers with BMD, who exhibited a very different growth pattern. Whereas in the short brother (-2.2 SDS) molecular investigation revealed a G367A mutation in the short stature homeobox containing (SHOX) gene located in the Xp22.3 region, no abnormality was found in the brother with normal height (-0.1 SDS). Our data suggest that abnormal growth observed in a boy with BMD may be related to an additional genetic alteration, already known as correlated with short stature.  相似文献   

18.
Summary We report a 2-year-old boy with Duchenne muscular dystrophy (DMD), glycerol kinase deficiency (GK) and adrenal hypoplasia congenita (AHC). At three weeks of age, the patient was hospitalized for the first time with symptoms of hypotone dehydration because of AHC, At present, he shows severe muscular hypotonia and developmental delay. The patient and his family were referred to us for prenatal diagnosis and carrier testing in the mother of the patient and the mother's sister, respectively. The patient's DNA was examined by Southern blot and polymerase chain reaction analyses, using cDNA and genomic probes within and around the dystrophin (DYS) locus. A deletion was revealed, spanning DXS28, the whole dystrophin locus, DXS84 and DXS148, whereas DXS67, DXS68 (pter) and OTC (cen) were found to be retained. The cytogenetically visible microdeletion was also seen in the patient's mother, but not in the mother's sister or the patient's maternal grandmother. Our findings support the locus order pter-DXS67-DXS68-DXS28-AHC-GK-DMD-cen.  相似文献   

19.
Genetic and molecular studies show that the Duchenne muscular dystrophy (DMD) locus at Xp21 is large and complex. We have analyzed this region using pulsed field gel electrophoresis (PFGE) and have determined physical distances between Xp21 probes. The sum of the sizes of the Sfil restriction fragments detected by these probes is greater than 4000 kb. The deletion endpoints in two DMD patients were detected by observing changes in these restriction fragments. In addition, the Xp21 breakpoint for the X;1 translocation in an affected female was mapped. These results demonstrate the applicability of PFGE for analysis of Xp21, and should facilitate the mapping of other translocations and deletions in this region, some of which lead to glycerol kinase deficiency and adrenal hypoplasia as well as DMD.  相似文献   

20.
Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号