首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Emerging evidence suggests that plant cell-wall-modifying enzymes induced by root-parasitic nematodes play important roles in feeding cell formation. We previously identified a tobacco endo-β-1,4-glucanase (cellulase) gene, NtCel7 , that was strongly induced in both root-knot and cyst nematode feeding cells. To characterize further the developmental and nematode-responsive regulation of NtCel7 , we isolated the NtCel7 promoter and analysed its expression over a time course of nematode infection and in response to auxin, gibberellin, ethylene and sucrose in soybean and tomato hairy roots and in Arabidopsis containing the NtCel7 promoter fused to the β-glucuronidase (GUS) reporter gene. Histochemical analyses of transgenic plant materials revealed that the NtCel7 promoter exhibited a unique organ-specific expression pattern during plant development suggestive of important roles for NtCel7 in both vegetative and reproductive growth. In all plant species tested, strong GUS expression was observed in root tips and lateral root primordia of uninfected roots with weaker expression in the root vasculature. Further analyses of transgenic Arabidopsis plants revealed expression in shoot and root meristems and the vasculature of most organs during plant development. We also determined that the NtCel7 promoter was induced by auxin, but not gibberellin, ethylene or sucrose. Moreover, strong GUS activity was observed in both cyst and root-knot nematode-induced feeding sites in transgenic roots of soybean, tomato and Arabidopsis. The conserved developmental and nematode-responsive expression of the NtCel7 promoter in heterologous plants indicates that motifs of this regulatory element play a fundamental role in regulating NtCel7 gene expression within nematode feeding sites and that this regulation may be mediated by auxin.  相似文献   

3.
Extensins are abundant proteins presumed to determine physical characteristics of the plant cell wall. We have cloned a cDNA encoding LeExt1 from a tomato (Lycopersicon esculentum Mill.) root hair cDNA library. The deduced sequence of the LeExt1 polypeptide defined a novel type of extensin-like proteins in tomato. Patterns of mRNA distribution indicated that expression of the LeExt1 gene was initiated in the root hair differentiation zone of the tomato rhizodermis. Cloning of the corresponding promoter and fusion to the -glucuronidase (GUS) reporter gene allowed detailed examination of LeExt1 expression in transgenic tomato plants. Evidence is presented for a direct correlation between LeExt1 expression and cellular tip growth. LeExt1/GUS expression was detectable in trichoblasts (=root hair-bearing cells), but not in atrichoblasts of the tomato rhizodermis. Both hair formation and LeExt1 expression was inducible by the plant hormone ethylene. Comparative analysis of the LeExt1/GUS expression was performed in transgenic tomato, potato (Solanum tuberosum), tobacco (Nicotiana tabacum), and Arabidopsis plants. In the apical/basal dimension, GUS staining was absent from the root cap and undifferentiated cells at the root tip in all species investigated. It was induced at the distal end of the differentiation zone and remained high proximally to the root/hypocotyl boundary. In the radial dimension, GUS expression was root hair specific in the solanaceous species. Whereas LeExt1 mRNA was exclusively detectable in the rhizodermis, root hair-specific expression correlated with GUS expression in germinating pollen tubes. This is correlative evidence for a role of LeExt1 in root hair tip growth [corrected].  相似文献   

4.
We have investigated the mechanism of lignification during tracheary element (TE) differentiation using a Zinnia elegans xylogenic culture. In the process, we isolated ZPO-C , a peroxidase gene of Z. elegans that is expressed specifically in differentiating TEs. ZPO-C is suggested to be involved in lignification of Z. elegans TEs in vivo and in vitro. Furthermore, a peroxidase gene of Arabidopsis thaliana ( AtPrx66 ), which is homologous to ZPO-C , was identified. The expression profile and functions of the gene in planta remain to be investigated. In this study, we performed promoter :: β-glucuronidase (GUS) assays to investigate the expression profiles and functions of the ZPO-C -like peroxidases in A. thaliana . We generated transgenic A. thaliana lines carrying AtPrx66, AtPrx47 or AtPrx64 (peroxidases showing high sequence similarity to AtPrx66 ) promoter :: GUS reporter gene fusions. The GUS activities of AtPrx66, AtPrx47 and AtPrx64 promoter :: GUS lines were arranged concentrically from the center to the periphery in the roots of seedlings. Furthermore, histochemical GUS assays using inflorescence stems showed that AtPrx66, AtPrx47 and AtPrx64 promoter-driven GUS were mainly expressed in the differentiating vessels, xylem parenchyma and sclerenchyma, respectively. These results suggest that the gene expressions of these three peroxidases, which showed high sequence similarity to one another, are differentially regulated in various tissues and organs. In addition, our results suggest that while AtPrx66 and AtPrx47 are associated with lignification of vessels, AtPrx64 is associated with lignification of sclerenchyma.  相似文献   

5.
6.
The expression of the auxin-inducible Nt103-1 gene of tobacco was studied in Arabidopsis thaliana. For this purpose we introduced a gene fusion between the promoter of the gene and the -glucuronidase reporter gene (GUS) into Arabidopsis thaliana. The expression and location of GUS activity were studied histochemically in time and after incubation of seedlings on medium containing auxins or other compounds. The auxins 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid (IAA), and 1-naphthylacetic acid (1-NAA) were able to induce GUS activity in the root tips of transgenic seedlings. The auxin transport inhibitor 2,3,5-triiodobenzoic acid was able to induce GUS activity not only in the root tip, but also in other parts of the root. Induction by the inactive auxin analog 3,5-dichlorophenoxyacetic acid was much weaker. Compounds like glutathione and the heavy metal CuSO4 were weak inducers. GUS activity observed after induction by glutathione was located in the transition zone. Salicylic acid and compounds increasing the concentration of hydrogen peroxide in the cell were also very well able to induce GUS activity in the roots. The possible involvement of hydrogen peroxide as a second messenger in the pathway leading to the induction of the Nt103-1 promoter is discussed.  相似文献   

7.
Expression of the -glucuronidase (GUS) reporter gene driven by the CaMV 35S, rolC, nos and mas promoters was assessed in the tips of 12 independent clones of transgenic sugar beet (Beta vulgaris) roots. Three questions were addressed: 1) expression pattern specific for a given promoter, 2) expression pattern variability, and 3) relationship between gene expression and cell differentiation. Characteristic patterns of tissue-specific expression were distinguished for each promoter. Striking differences, however, were found between some clones, bearing the same construct. Statistical analysis of the pattern variability proved that the variability is significantly lower within the construct than between constructs. rolC-GUS clones exhibited the lowest and CaMV 35S clones the highest pattern variability. Comparisons between the four promoters showed consistent GUS activity in areas playing a key role in tissue determination (the elongation zone) where cells switch from frequent mitosis and mostly isodiametrical growth, typical for the promeristem, to rapid elongation and differentiation. All of the clones were highly GUS-positive in the elongation zone of stele. Activity was commonly localised in the stele of the maturation zone for CaMV 35S, rolC and mas-GUS clones. CaMV 35S-GUS clones were highly active in the promeristem.  相似文献   

8.
SULTR2;1 is a low-affinity sulfate transporter expressed in the vascular tissues of roots and leaves for interorgan transport of sulfate in Arabidopsis thaliana . Transgenic Arabidopsis carrying a fusion gene construct of SULTR2;1 5'-promoter region and β-glucuronidase coding sequence (GUS) demonstrated that within the reproductive tissues, SULTR2;1 is specifically expressed in the bases and veins of siliques and in the funiculus, which connects the seeds and the silique. The antisense suppression of SULTR2;1 mRNA caused decrease of sulfate contents in seeds and of thiol contents both in seeds and leaves, as compared with the wildtype (WT). The effect of antisense suppression of SULTR2;1 on seed sulfur status was determined by introducing a sulfur-indicator construct, p35S::βSRx3:GUS, which drives the expression of GUS reporter under a chimeric cauliflower mosaic virus 35S promoter containing a triplicate repeat of sulfur-responsive promoter region of soybean β-conglycinin β subunit (βSRx3). The mature seeds of F1 plants carrying both the SULTR2;1 antisense and p35S::βSRx3:GUS constructs exhibited significant accumulation of GUS activities on sulfur deficiency, as compared with those carrying only the p35S::βSRx3:GUS construct in the WT background. These results suggested that SULTR2;1 is involved in controlling translocation of sulfate into developing siliques and may modulate the sulfur status of seeds in A. thaliana .  相似文献   

9.
Genomic and cDNA clones have been isolated for an Arabidopsis thaliana gene, ARSK1, that encodes a protein with structural similarities to serine/threonine kinases. Expression of ARSK1 is root specific and is induced by exposing roots to air during growth or by treatment of roots with ABA or NaCl. ARSK1 gene expression in transgenic plants is confined to cells in the tissues of the root as measured by β-glucuronidase (GUS) expression from an ARSK1 gene promoter—GUS gene construct. Transverse sections of the stained roots further defined the tissue-specificity; high levels of expression in the epidermal, endoepidermal and cortex regions, but no or very little expression in the vascular system. Another feature of the expression pattern of the ARSK1 gene was a gradual increase in the expression level along the root with the highest level of expression in the region closest to the root meristem. These studies suggest that ARSK1 may have a role in the signal transduction pathway of osmotic stress.  相似文献   

10.
11.
12.
We hypothesized that soybean cyst nematode (SCN; Heterodera glycines) co-opts part or all of one or more innate developmental process in soybean (Glycine max) to establish its feeding structure, syncytium, in soybean roots. The syncytium is formed within the vascular bundle by partial degradation of cell walls and membranes between adjacent parenchyma cells. A mature syncytium incorporates as many as 200 cells into one large multinucleated cell. Gene expression patterns for several cell wall-modifying proteins were compared in multiple tissues undergoing major shifts in cell wall integrity. These included SCN-colonized roots, root tips where vascular differentiation occurs, flooded roots (aerenchyma), adventitious rooting in hypocotyls, and leaf abscission zones. A search in the 5' upstream promoters of these genes identified a motif (SCNbox1: WGCATGTG) common to several genes that were up-regulated in several different tissues. The polygalacturonase 11 promoters (GmPG11a/b) include the SCNbox1 motif. The expression pattern for GmPG11a was examined further in transgenic soybean containing a PG11a promoter fused to a β-glucuronidase (GUS) reporter gene. GUS expression was highest in cells undergoing radial expansion in the stele and/or cell wall dissolution. GUS staining was not observed in cortical cells where a lateral root tip or a growing nematode emerged through the root cortex.  相似文献   

13.
Two important marker proteins used in plant gene expression studies are green fluorescent protein (GFP) and β-glucuronidase (GUS). We have compared the utility of each in the analysis of a relatively weakArabidopsis thaliana promoter. The background green fluorescence of arabidopsis tissues and organs has been catalogued. This background fluorescence makes it difficult to detect weak promoter activity driving GFP, a problem compounded by the lack of amplification of the GFP signal. In the case of β-glucuronidase, due to diffusion of the enzymatic product, GUS may over-report promoter activity. However, because of the enzymatic amplification of the signal and the low β-glucuronidase activity of untransformed arabidopsis tissues, weak promoter activity is more easily and more accurately detected using GUS.  相似文献   

14.
The symbiosis between the actinorhizal tree Allocasuarina verticillata and the actinomycete Frankia leads to the formation of root nodules inside which bacteria fix atmospheric nitrogen. Actinorhizal nodule organogenesis starts with the induction of cell divisions in the root cortex and in the pericycle cells opposite protoxylem poles near Frankia -infected root hairs. To study the ability of Frankia to induce progression through the cell cycle, we monitored the expression of the β-glucuronidase ( gus ) gene driven by the promoter from cdc2aAt , an Arabidopsis cyclin-dependent kinase gene that displays competence for cell division, during plant growth and nodule ontogenesis. In non-symbiotic tissues, the gus gene was mainly expressed in primary and secondary meristems of roots and shoots. Auxins and cytokinins were found to induce reporter gene activity in the root system of whole plants, showing that the promoter cdc2aAt displayed the same regulation by hormones in Allocasuarina as that reported in Arabidopsis . In transgenic nodules, gus expression was found to be restricted to the phellogen. During the early stages of the interaction between Frankia and the plant root system, cdc2aAt was strongly induced in the lateral roots surrounded by hyphae of the actinomycete. Histochemical analysis of β-glucuronidase activity revealed that cells from the pericycle opposite protoxylem poles were very deeply stained. These data indicate that upon Frankia infection, cells from the lateral roots, and notably pericycle cells that can give rise to a nodule or a root primordium, prepare to re-enter the cell cycle.  相似文献   

15.
Hachtel  Wolfgang  Strater  Tim 《Plant and Soil》2000,221(1):33-38
A 1535 bp promoter of the nitrate reductase gene (nia) from birch (Betula pendula) and a series of 5′ deletions were fused to the β-glucuronidase (GUS) gene and introduced into Nicotiana plumbaginifolia. In transgenic plants the NR promoter sequences directed strong GUS expression in the root epidermal hair cells, and in phloem cells of leaf and stem vascular tissue. The NR promoter confers also a significant stimulation of the GUS gene expression by nitrate. These findings might indicate that nitrate flow is one of the signals involved into tissue and cell specific expression of the NR promoter GUS fusions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Tissue-specific patterns and levels of protein expression were characterized in transgenic carrot plants transformed with the β-glucuronidase (GUS) gene driven by one of five promoters: Cauliflower mosaic virus 35S (35S) and double 35S (D35S), Arabidopsis ubiquitin (UBQ3), mannopine synthase (mas2) from Agrobacterium tumefaciens or the rooting loci promoter (rolD) from A. rhizogenes. Five independently transformed carrot lines of each promoter construct were assessed for GUS activity. In leaves, activity was highest in plants with the D35S, 35S and UBQ3 promoters, while staining was weak in plants with the mas2 promoter, and only slight visual staining was present in the leaf veins of plants containing rolD promoter . Strong staining was seen in the lateral roots, including root tips, hairs and the vascular tissues of plants expressing the 35S, D35S and UBQ3. Lateral roots of plants containing the rolD construct also showed staining in these tissues while the mas2 promoter exhibited heightened staining in the root tips. Relatively strong GUS staining was seen throughout the tap root with all the promoters tested.. When GUS expression was quantified, the UBQ3 promoter provided the highest activity in roots of mature plants, while plants with the D35S and 35S promoter constructs had higher activity in the leaves. Although plants containing the mas2 promoter had higher levels of activity compared to the rolD plants, these two promoters were significantly weaker than D35S, 35S and UBQ3. The potential for utilization of specific promoters to target expression of desired transgenes in carrot tissues is demonstrated.  相似文献   

17.
Class I β-1,3-glucanases are antifungal vacuolar proteins implicated in plant defense that show developmental, hormonal, and pathogenesis-related regulation. The expression was studied in germinating tobacco seeds of a chimeric β-glucuronidase (GUS) reporter gene fused to 1.6 kb of the 5' flanking sequence of the tobacco class I β-1,3-glucanase B (GLB) promoter. Histological staining for GUS activity showed that expression of the GLB promoter is highly localized in a specific zone of the endosperm in germinating seeds. The temporal and spatial patterns of GUS and β-1,3-glucanase activity found, suggest a novel function for class I β-1,3-glucanases during seed germination in a dicotyledonous plant.  相似文献   

18.
19.
多聚ADP核糖聚合酶(PARP)受基因毒剂的特异性诱导。将拟南芥(Arabidopsis thaliana)AtPARP1基因上游长2179bp的启动子片段插入到质粒pAKK687的β-葡萄糖醛酸糖苷酶(GUS)报告基因上游,转化拟南芥。GUS组织化学染色结果表明,GUS报告基因仅在苗龄3-5天的拟南芥根部及花发育早期的雄蕊中表达;1.5μg.mL-1博莱霉素与22μg.mL-1丝裂霉素联用强烈诱导了GUS报告基因的表达(尤其在拟南芥的幼苗和果荚中)。进一步降低抗生素浓度,发现单独使用1μg.mL-1博莱霉素对GUS报告基因也具较强的诱导活性,且对拟南芥幼苗的生长无影响。上述结果表明,AtPARP1启动子是一个新型的具较大应用潜力的抗生素诱导型启动子。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号