首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The intracellular events regulating endothelial cell proliferation and organization into formalized capillaries are not known. We report that the protein kinase C activator beta-phorbol 12,13-dibutyrate (PDBu) suppresses bovine capillary endothelial (BCE) cell proliferation (K50 = 6 +/- 4 nM) and DNA synthesis in response to human hepatoma-derived growth factor, an angiogenic endothelial mitogen. In contrast, PDBu has no effect on the proliferation of bovine aortic endothelial cells and is mitogenic for bovine aortic smooth muscle and BALB/c 3T3 cells. Several observations indicate that the inhibition of human hepatoma-derived growth factor-stimulated BCE cell growth by PDBu is mediated through protein kinase C. Different phorbol compounds inhibit BCE cell growth according to their potencies as protein kinase C activators (12-O-tetradecanoylphorbol 13-acetate greater than PDBu much greater than beta-phorbol 12,13-diacetate much much greater than beta-phorbol; alpha-phorbol 12,13-dibutyrate; alpha-phorbol 12,13-didecanoate). PDBu binds to a single class of specific, saturable sites on the BCE cell with an apparent Kd of 8 nM, in agreement with reported affinities of PDBu for protein kinase C in other systems. Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol, a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. A cytosolic extract from BCE cells contains a calcium/phosphatidylserine-dependent protein kinase that is activated by sn-1,2-dioctanoylglycerol and PDBu, but not by beta-phorbol. These findings indicate that protein kinase C activation can cause capillary endothelial cells to become desensitized to angiogenic endothelial mitogens. This intracellular regulatory mechanism might be invoked during certain phases of angiogenesis, for example when proliferating endothelial cells become differentiated to organize into nongrowing tubes.  相似文献   

2.
The human plasma serine protease, activated protein C (APC), primarily exerts its anticoagulant function by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. A recombinant active site Ser 360 to Ala mutation of protein C was prepared, and the mutant protein was expressed in human 293 kidney cells and purified. The activation peptide of the mutant protein C zymogen was cleaved by a snake venom activator, Protac C, but the "activated" S360A APC did not have amidolytic activity. However, it did exhibit significant anticoagulant activity both in clotting assays and in a purified protein assay system that measured prothrombinase activity. The S360A APC was compared to plasma-derived and wild-type recombinant APC. The anticoagulant activity of the mutant, but not native APC, was resistant to diisopropyl fluorophosphate, whereas all APCs were inhibited by monoclonal antibodies against APC. In contrast to native APC, S360A APC was not inactivated by serine protease inhibitors in plasma and did not bind to the highly reactive mutant protease inhibitor M358R alpha 1 antitrypsin. Since plasma serpins provide the major mechanism for inactivating APC in vivo, this suggests that S360A APC would have a long half-life in vivo, with potential therapeutic advantages. S360A APC rapidly inhibited factor Va in a nonenzymatic manner since it apparently did not proteolyze factor Va. These data suggest that native APC may exhibit rapid nonenzymatic anticoagulant activity followed by enzymatic irreversible proteolysis of factor Va. The results of clotting assays and prothrombinase assays showed that S360A APC could not inhibit the variant Gln 506-FVa compared with normal Arg 506-FVa, suggesting that the active site of S360A APC binds to FVa at or near Arg 506.  相似文献   

3.
The proteome contains hundreds of proteins that in theory could be excellent therapeutic targets for the treatment of human diseases. However, many of these proteins are from functional classes that have never been validated as viable candidates for the development of small molecule inhibitors. Thus, to exploit fully the potential of the Human Genome Project to advance human medicine, there is a need to develop generic methods of inhibiting protein activity that do not rely on the target protein's function. We previously demonstrated that a normally stable protein, methionine aminopeptidase-2 or MetAP-2, could be artificially targeted to an Skp1-Cullin-F-box (SCF) ubiquitin ligase complex for ubiquitination and degradation through a chimeric bridging molecule or Protac (proteolysis targeting chimeric molecule). This Protac consisted of an SCF(beta-TRCP)-binding phosphopeptide derived from IkappaBalpha linked to ovalicin, which covalently binds MetAP-2. In this study, we employed this approach to target two different proteins, the estrogen (ER) and androgen (AR) receptors, which have been implicated in the progression of breast and prostate cancer, respectively. We show here that an estradiol-based Protac can enforce the ubiquitination and degradation of the alpha isoform of ER in vitro, and a dihydroxytestosterone-based Protac introduced into cells promotes the rapid disappearance of AR in a proteasome-dependent manner. Future improvements to this technology may yield a general approach to treat a number of human diseases, including cancer.  相似文献   

4.
F Okajima  K Sato  Y Kondo 《FEBS letters》1989,253(1-2):132-136
Various adenine nucleotides activated phospholipase C of FRTL-5 cell membranes in the following order of activity, ATP gamma S greater than ATP greater than AppNp greater than AppCp = ADP greater than MeSATP. This order was well consistent with that observed in intact cells. Such activation occurred only in the presence of appropriate concentrations of GTP gamma S and Ca2+, in a way similar to the norepinephrine-induced activation. NaF, a non-specific GTP-binding protein (G-protein) activator, also stimulated the enzyme. These adenine nucleotides, norepinephrine and NaF-induced activations were inhibited by GDP beta S. We conclude that a G-protein is involved in the adenine nucleotides-induced activation of phospholipase C via P2-purinergic receptor in FRTL-5 cells.  相似文献   

5.
In order to determine the effect of bacterial proteinases on activation of the protein C system, a negative regulator of blood coagulation, two arginine-specific cysteine proteinases (gingipains R) from Porphyromonas gingivalis, a causative bacterium of adult periodontitis, were examined. Each enzyme activated human protein C in a dose- and incubation time-dependent manner. Interestingly, the form of enzyme being composed of a non-covalent complex containing both catalytic and adhesion domains (RgpA) produced activated protein C 14-fold more efficiently than RgpB which contained the catalytic domain alone. The kcat/Km value of RgpA was 18-fold higher than that of RgpB and comparable to that of the thrombin-thrombomodulin complex, the physiological activator of protein C. RgpA catalyzed protein C activation was augmented 1.4-fold by phospholipids, ubiquitous cell membrane components. Furthermore, RgpA, but not RgpB, could activate protein C in plasma and this resulted in a decrease of the protein C concentration in plasma, which is often observed in patients with sepsis during the development of disseminated intravascular coagulation (DIC). These data indicate that RgpA is a more potent activator of protein C than RgpB and suggest that only the former enzyme can cause protein C activation in vivo. The present study further suggests that bacterial proteinases may possibly contribute to the consumption of plasma protein C which predisposes to DIC and/or promotes a thrombotic tendency towards DIC in sepsis.  相似文献   

6.
A calcium-dependent cyclic nucleotide phosphodiesterase from rat cerebrum was, in the absence of activator protein, inhibited by various monovalent cations. The inhibition was rapid, readily reversible, and concentration-dependent, with 100 mM cesium, rubidium, or potassium ion inhibiting essentially all basal enzyme activity, while 100 mM sodium or lithium ions produced only moderate inhibition. The potency of the cations in inhibiting the enzyme was Cs greater than or equal to Rb greater than K greater than Na greater than or equal to Li. Potassium ions increased the apparent Km for cyclic GMP and cyclic AMP by 3- and 5-fold, respectively. At 100 mM, the monovalent cations inhibited enzyme activated by the calcium-dependent activator by only 15 to 30%, while at 55 mM no inhibition pertained. Potassium and sodium ions at 55 mM had no effect on the calcium-independent phosphodiesterase from rat cerebrum. The results indicate that at normal intracellular concentrations of potassium ions the activity of the calcium-dependent phosphodiesterase is virtually completely dependent on the presence of calcium plus activator protein.  相似文献   

7.
W P Fay  W G Owen 《Biochemistry》1989,28(14):5773-5778
Plasminogen activator inhibitor (PAI) was purified in active form from porcine platelets under nondenaturing conditions. The purified inhibitor (Mr 47,000) reacts with tissue-type plasminogen activator (t-PA), urokinase (UK), and activated protein C (APC) to yield both SDS-stable complexes and a modified PAI of slightly reduced molecular weight. The second-order rate constants for the inhibition of t-PA and UK by PAI are 3.5 X 10(7) and 3.4 X 10(7) M-1 s-1, respectively. Activated protein C reacts with PAI with a second-order rate constant of 1.1 X 10(4) M-1 s-1. This rate is not accelerated by protein S, phospholipid, and calcium, or heparin. It is concluded that (1) PAI can function as both inhibitor and substrate of its target proteases, (2) if APC promotes fibrinolysis via inactivation of PAI, then APC must be present in concentrations several orders of magnitude greater than t-PA, or the interaction of APC and PAI must be accelerated by presently unknown mechanisms, and (3) in the absence of heparin, platelet PAI is the most rapid inhibitor of APC yet described.  相似文献   

8.
alpha 1-Antitrypsin (alpha 1-AT) was recently identified as a major physiologic plasma inhibitor of activated protein C. The reaction with activated protein C of recombinant alpha 1-AT containing amino acid substitutions at the reactive center was studied. The substitution of Arg358 for Met, as observed in a patient with a severe bleeding disorder with the mutant alpha 1-AT Pittsburgh, increased the association rate constant for activated protein C from 1.1 x 10(1) to 4.9 x 10(4) M-1 s-1. The association rate constant of activated protein C with protein C inhibitor, a native plasma serpin that contains Arg354 at the reactive site, is 6 x 10(3) M-1 s-1 in the absence of heparin. Plasma containing 4 microM [Arg358]alpha 1-AT inhibited activated protein C activity by greater than 95% in 15 s, and the inhibited activated protein C was shown by immunoblotting to exist as activated protein C-inhibitor complexes. In controls 50% loss of activated protein C activity in normal plasma occurred in 19 min. Double-substituted [Pro357,Met358]alpha 1-AT----[Ala357,Arg358]alpha 1-AT had similar reactivity toward activated protein C as the single-substituted [Arg358]alpha 1-AT. Thus, replacement of the reactive center Met358 of alpha 1-AT by Arg358, analogous to Arg354 of protein C inhibitor, results in an activated protein C inhibitor that is more potent than either of the native inhibitors. Comparison of the association rate constant of the [Arg358]alpha 1-AT for activated protein C to that for thrombin (4 x 10(4) versus 3 x 10(5) M-1 s-1) suggests that thrombin would be more effectively inhibited than activated protein C, thereby giving an explanation for bleeding rather than thrombosis in the alpha 1-AT Pittsburgh patient.  相似文献   

9.
Phosphodiesterase activator protein has been purified from bovine brain and its properties compared with that of bovine heart troponin C. While both proteins activate ‘activator depleted phosphodiesterase’ in the presence of Ca2+, a 200-fold greater concentration of troponin C was necessary and the maximal effect was less than that with the activator protein. The activator protein formed a Ca2+ -dependent complex with bovine heart troponin I during electrophoresis in 6 M urea-polyacrylamide gel. However, the mobility of this complex was different from that of troponin C · troponin I complex and the affinity between troponin C and troponin I was much stronger than that between the activator protein and troponin I. Ca2+ induced changes in the electrophoretic mobility of activator protein and the pattern of its elution during gel filtration which were similar to the Ca2+-dependent conformational changes observed with troponin C. Bovine heart troponin I reduced basal, troponin C and the activator protein stimulation of phosphodiesterase activity. These results are compatible with the concept that phosphodiesterase activator protein and troponin C might have a functional relationship.  相似文献   

10.
11.
In separate experiments, antibodies to plasminogen, factor X and protein C were applied to microtitre trays as commonly used in enzyme-linked immunoassays. After incubation with dilute normal human plasma as a source of the corresponding proenzyme antigen, the wells were exposed to dilutions of various snake venoms. After thorough washing, the microtitre tray wells were tested overnight with chromogenic tripeptide substrates known to be relatively specific for the activated forms of the above factors, i.e., plasmin, factor Xa and activated protein C. The immunochromometric assay described detected two new activators of protein C in Agkistrodon piscivorus and Agkistrodon contortrix venoms and a new factor X activator in Agkistrodon rhodostoma venom. Gel filtration of the latter venom indicated that the factor X activator eluted with high molecular weight, was clearly distinct from the peak fibrinogen clotting activity (Ancrod) and appeared to have no procoagulant activity. Although several Bothrops venoms appeared to contain plasminogen activator by this technique, the observed strong chromogenic activity was observed in microtitre wells independently of plasminogen and represented nonspecific amidase activity.  相似文献   

12.
Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; PAF) is a potent vasoactive ether lipid produced by activated blood cells and endothelial cells. Vascular smooth muscle cells partially convert exogenous PAF to 1-O-alkyl-2-acetyl-sn-glycerol (AAG), a biologically active diacylglycerol analogue. AAG is formed rapidly (less than 15 s) after exposure of the smooth muscle cells and does not appear to be a substrate for diacylglycerol kinase in these cells. Although most of the compound is metabolized to 1-O-alkyl-sn-glycerol, a small quantity remains as AAG for greater than or equal to 6 h. AAG inhibits phorbol ester binding, and it is as effective an activator of protein kinase C as diolein in an in vitro assay. Furthermore, AAG and PAF produce the same pattern of effects on smooth muscle cell proliferation. These observations suggest that at least some of the actions of PAF in vascular smooth muscle may be mediated through the formation of AAG, a stable, bioactive metabolite that appears to function as a diacylglycerol analogue.  相似文献   

13.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

14.
Calphostin C (UCN-1028C), a newly isolated compound from Cladosporium cladosporioides, is a potent and specific inhibitor of protein kinase C, because it was 1000 times more inhibitory to protein kinase C (IC50, 0.05 microM) than other protein kinases such as cAMP-dependent protein kinase and tyrosine-specific protein kinase (IC50, greater than 50 microM). Calphostin C did not inhibit calcium activated neutral protease (calpain)-digested protein kinase C, indicating that it interacts with the regulatory domain of protein kinase C. In addition this compound showed inhibitory effects on the binding of [3H]PDBu to protein kinase C. The potent cytotoxic activity and antitumor activity of calphostin C might be due to the inhibition of protein kinase C, and thus it may be potentially useful for the therapeutic application.  相似文献   

15.
Cremophor EL, a castor oil derivative, has been considered a non-toxic solubilizer for lipophilic drugs and vitamins. Protein kinase C, a phospholipid/Ca++-dependent protein kinase, is known to phosphorylate, in response to extracellular stimuli, a variety of proteins for cellular functions. The present study shows that Cremophor EL selectively inhibits the activity of protein kinase C in vitro. The potency of this selective inhibition is greater than that of other protein kinase C-specific inhibitor thus far reported. Cremophor EL acts primarily on the enzyme activator diacylglycerol (or the phorbol ester) and prevents the latter from both interacting with the phospholipid and binding to protein kinase C. This is the first report of a significant biological activity induced by this widely used substituted castor oil solubilizer.  相似文献   

16.
Abstract

For use as an antithrombotic agent, a thrombin inhibitor must be potent and specific, i.e., it should not significantly inhibit the proteases of the anticoagulation (activated protein C) and fibrinolytic systems (plasminogen activator and plasmin). Previous evaluation of potency and specificity has been based on inhibition constants (Ki values). However, consideration of the kinetic parameters for natural plasma serine protease inhibitors indicates that a low Ki value with thrombin is not sufficient; the inhibited complex must also form rapidly. Moreover, potent inhibition of activated protein C and plasmin could be tolerated providing the inhibited complex only forms slowly. An ideal profile of kinetic parameters with thrombin, activated protein C and plasmin is formulated and discussed in relation to various classes of thrombin inhibitors. Examination of kinetic data for thrombin inhibitors currently in clinical trials (hirudin and hirulog) indicates that they possess this ideal profile of kinetic parameters.  相似文献   

17.
The ATP-phosphohydrolase activity of extracts prepared from bovine spermatozoa flagella (BSFE), was characterized with respect to enzyme, substrate, activator ion and salt concentration, temperature dependence and time stability. BSFE required the presence of a divalent cation for activity: Mg++ or Ca++ could function as activator; Mn++, Zn++ and Cd++ could not. EDTA, but not EGTA, was inhibitory to enzymatic activity. Ca++ inhibited the Mg++ stimulated activity. ATP was dephosphorylated more rapidly than GTP greater than CTP greater than ITP, and ADP was dephosphorylated at 40% of the rate of ATP. The magnesium activated ATPase was stimulated by potassium and inhibited by sodium ions. Activation of BSFE ATP-phosphohydrolase was maximal in the presence of Mg++ and ATP in equimolar concentrations and K+ (0.05-0.3 M) at 30 degrees C. Although the enzymatic activity of the extract was found to decrease rapidly with time, it could be maintained for up to three days by the addition of 2-beta-mercaptoethanol to the bovine spermatozoa flagellar extracts.  相似文献   

18.
The cellular slime mold Dictyostelium discoideum has an intracellular phosphodiesterase which specifically hydrolyzes cGMP. The enzyme is activated by low cGMP concentrations, and is involved in the reduction of chemoattractant-mediated elevations of cGMP levels. The interaction of 20 cGMP derivatives with the activator site and with the catalytic site of the enzyme has been investigated. Binding of cGMP to the activator site is strongly reduced (more than 80-fold) if cGMP is no longer able to form a hydrogen bond at N2H2 or O2'H. Modifications at N7, C8, O3' and O5' induce only a small reduction of binding affinity. A cyclic phosphate structure, as well as a negatively charged oxygen atom at phosphorus, are essential to obtain activation of the enzyme. Substitution of the axial exocyclic oxygen atom by sulphur is tolerated; modification of the equatorial oxygen atom reduces the binding activity of cGMP to the activator site by 90-fold. Binding of cGMP to the catalytic site is strongly reduced if cGMP is modified at N1H, C6O, C8 and O3', while modifications at N2H2, N3, N7, O2'H, and O5' have minor effects. Both exocyclic oxygen atoms are important to obtain binding of cGMP to the catalytic site. The results indicate that activation of the enzyme by cGMP and hydrolysis of cGMP occur at different sites of the enzyme. cGMP is recognized at these sites by different types of molecular interaction between cGMP and the protein. cGMP derivatives at concentrations which saturate the activator site do not induce the same degree of activation of the enzyme (activation 2.3-6.6-fold). The binding affinities of the analogues for the activator site and their maximal activation are not correlated. Our results suggest that the enzyme is activated because cGMP bound to the activator site stabilizes a state of the enzyme which has a higher affinity for cGMP at the catalytic site.  相似文献   

19.
1. The specific activity of the membrane-bound ATPase of Streptococcus cremoris HA was 1.30 mumol Pi/mg protein/min. 2. Km for ATP as substrate was 0.8 mM. 3. The pH optimum was 8.0 at +37 degrees C. 4. The ATPase was maximally activated with Mg2+/ATP molar ratio of 1:2. 5. Cations activated the enzyme in order: Mg2+ greater than Co2+ greater than Mn2+ greater than Zn2+ greater than Ca2+ greater than K+ greater than Na+. 6. The enzyme was inhibited by oligomycin (27-77%), sodium azide (13-33%) and ouabain (15-22%). N,N'-dicyclohexylcarbodiimide had no effect on the enzyme activity.  相似文献   

20.
Phorbol esters induce a rapid phosphorylation of the antigenic epitope of the human IL-2 receptor identified by anti-Tac monoclonal antibody. The physiological activator of protein kinase C, diacylglycerol also stimulated the phosphorylation of the Tac epitope in intact activated human T lymphocytes. Stable derivatives of cyclic nucleotides had no effect on the stimulation of Tac phosphorylation with cultured lymphocytes. Immunoprecipitated Tac derived from particulate membranes could serve as a direct substrate for purified protein kinase C in vitro. The Ca2+/phospholipid dependency of the in vitro phosphorylation reaction substantiated that the phosphorylation of Tac observed in intact cells stimulated by phorbol ester or diacylglycerol was the result of the physiological activation of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号