首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Frontotemporal dementia accounts for a significant fraction of dementia cases. Frontotemporal dementia with parkinsonism linked to chromosome 17 is associated with either exonic or intronic mutations in the tau gene. This highlights the involvement of aberrant pre-mRNA splicing in the pathogenesis of neurodegenerative disorders. Little is known about the molecular mechanisms of the splicing defects underlying these diseases. To establish a model system for studying the role of pre-mRNA splicing in neurodegenerative diseases, we have constructed a tau minigene that reproduces tau alternative splicing in both cultured cells and in vitro biochemical assays. We demonstrate that mutations in a nonconserved intronic region of the human tau gene lead to increased splicing between exon 10 and exon 11. Systematic biochemical analyses indicate the importance of U1 snRNP and, to a lesser extent, U6 snRNP in differentially recognizing wild-type versus intron mutant tau pre-mRNAs. Gel mobility shift assays with purified U1 snRNP and oligonucleotide-directed RNase H cleavage experiments support the idea that the intronic mutations destabilize a stem-loop structure that sequesters the 5' splice site downstream of exon 10 in tau pre-mRNA, leading to increases in U1 snRNP binding and in splicing between exon 10 and exon 11. Thus, mutations in nonconserved intronic regions that increase rather than decrease alternative splicing can be an important pathogenic mechanism for the development of human diseases.  相似文献   

3.
The cleavage properties of a trans-acting hammerhead ribozyme targeted 51 bases upstream of the putative splicing branch point in the hamster prion pre-mRNA intron were investigated in cell-free model systems in vitro. The specificity of cleavage was demonstrated by the inability of this ribozyme to cleave a non-homologous synthetic message encoding part of the beta amyloid peptide precursor, beta APP, and by the inability of the prion pre-mRNA to be cleaved by a ribozyme targeted to beta amyloid peptide precursor mRNA. Also, the addition of total RNA isolated from rat brain had only a minimal effect on the cleavage of the prion substrate pre-mRNA by the ribozyme. Finally neither the presence of 100 ng of nuclear or cytoplasmic proteins were found to affect the rate of cleavage in vitro.  相似文献   

4.
Processing of intronic microRNAs   总被引:9,自引:0,他引:9  
Kim YK  Kim VN 《The EMBO journal》2007,26(3):775-783
  相似文献   

5.
6.
7.
8.
9.
We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations.  相似文献   

10.
11.
12.
In vitro processing of the human growth hormone primary transcript   总被引:3,自引:2,他引:1       下载免费PDF全文
  相似文献   

13.
14.
15.
The essential splicing factor ASF/SF2 activates or represses splicing depending on where on the pre-mRNA it binds. We have shown previously that ASF/SF2 inhibits adenovirus IIIa pre-mRNA splicing by binding to an intronic repressor element. Here we used MS2-ASF/SF2 fusion proteins to show that the second RNA binding domain (RBD2) is both necessary and sufficient for the splicing repressor function of ASF/SF2. Furthermore, we show that the completely conserved SWQDLKD motif in ASF/SF2-RBD2 is essential for splicing repression. Importantly, this heptapeptide motif is unlikely to be directly involved in RNA binding given its position within the predicted structure of RBD2. The activity of the ASF/SF2-RBD2 domain in splicing was position-dependent. Thus, tethering RBD2 to the IIIa intron resulted in splicing repression, whereas RBD2 binding at the second exon had no effect on IIIa splicing. The splicing repressor activity of RBD2 was not unique to the IIIa pre-mRNA, as binding of RBD2 at an intronic position in the rabbit beta-globin pre-mRNA also resulted in splicing inhibition. Taken together, our results suggest that ASF/SF2 encode distinct domains responsible for its function as a splicing enhancer or splicing repressor protein.  相似文献   

16.
The Nova family of neuron-specific RNA-binding proteins were originally identified as targets in an autoimmune neurologic disease characterized by failure of motor inhibition. Nova-1 regulates alternative splicing of pre-mRNAs encoding the inhibitory neurotransmitter receptor subunits GABA(A)Rgamma2 and GlyRalpha2 by directly binding intronic elements, resulting in enhancement of exon inclusion. Here we identify exon E4 in the Nova-1 pre-mRNA itself, encoding a phosphorylated protein domain, as an additional target of Nova-dependent splicing regulation in the mouse spinal cord. Nova binding to E4 is necessary and sufficient for Nova-dependent exon exclusion. E4 harbors five repeats of the known Nova-binding tetranucleotide YCAY and mutation of these elements destroys Nova-dependent regulation. Furthermore, swapping of the sites from Nova-1 and GABA(A)Rgamma2 indicates that the ability of Nova to enhance or repress alternative exon inclusion is dependent on the position of the Nova-binding element within the pre-mRNA. These studies demonstrate that in addition to its previously described role as a splicing activator, Nova autoregulates its own expression by acting as a splicing repressor.  相似文献   

17.
18.
The structural motif formed between a hammerhead ribozyme and its substrate consists of three RNA double helices in which the sequence 5' to the XUY is termed helix I and the sequence 3' to the XUY helix III. Two hammerhead ribozymes targeted to the tat gene of HIV-1SF2 were designed to study target specificity and the potential effect of helix I mismatch on ribozyme efficacy both in vitro and in vivo. The first ribozyme (Rz1) targeted to the 5' splicing region of the tat gene was designed to cleave GUC*A. In HIV-1IIIB the A is changed to a G. The second ribozyme (Rz2) was targeted to the translational initiation region of the tat gene which is highly conserved among a variety of HIV-1 isolates, including both HIV-1SF2 and HIV-1IIIB. In vitro cleavage studies demonstrated that Rz1 efficiency cleaved HIV-1SF2 substrate RNA, but not HIV-1IIIB, presumably due to the base change from A to G. In contrast, Rz2 cleaved HIV-1SF2 or HIV-1IIIB substrate with equal efficiency. Both ribozymes were cloned into the 3' untranslated region of the neomycin gene (neo) within the pSV2neo vector and transfected into the SupT1 human CD4+ T cell line. Following selection, stable transfectants were challenged with either HIV-1SF2 or HIV-1IIIB virus. While Rz1-expressing cells were significantly protected from HIV-1SF2 infection, they exhibited no protection when infected with HIV-1IIIB virus. In contrast, Rz2 was effective in inhibiting the replication of both HIV-1SF2 and HIV-1IIIB in SupT1 cells. Expression of both ribozymes in these cells was demonstrated by Northern analysis. RT-PCR sequencing analysis confirmed the respective HIV-1 target sequence integrity. These data demonstrate the importance of the first base pair distal to the XUY within helix I of the hammerhead structure for both in vitro and in vivo ribozyme activities and imply that the effectiveness of the anti-HIV-1 ribozymes against appropriate target sequences is due to their catalytic activities rather than any antisense effect.  相似文献   

19.
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号