首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.  相似文献   

2.
A hammerhead ribozyme targeted against the HIV-1 env coding region was expressed as part of the anticodon loop of human tRNA3Lys without sacrificing tRNA stability or ribozyme catalytic activity. These tRNA-ribozymes were isolated from a library which was designed to contain linkers (sequences connecting the ribozyme to the anticodon loop) of random sequence and variable length. The ribozyme target site was provided in cis during selection and in trans during subsequent characterization. tRNA-ribozymes that possessed ideal combinations of linkers were expected to recognize the cis target site more freely and undergo cleavage. The cleaved molecules were isolated, cloned and characterized. Active tRNA-ribozymes were identified and the structural features conducive to cleavage were defined. The selected tRNA-ribozymes were stable, possessed cleavage rates lower or similar to the linear hammerhead ribozyme, and could be transcribed by an extract containing RNA polymerase III. Retroviral vectors expressing tRNA-ribozymes were tested in a human CD4+ T cell line and were shown to inhibit HIV-1 replication. These tRNA3Lys-based hammerhead ribozymes should therefore prove to be valuable for both basic and applied research. Special application is sought in HIV-1 or HIV-2 gene therapy.  相似文献   

3.
Five short hammerhead ribozymes (Rzs) were constructed and tested, using a range ofin vitro reaction conditions, for catalytic activity against the mRNA encoding the lignin-forming peroxidase (TPX) of tobacco. Although all 5 Rzs were shown to be able to cleave the RNA substrate, percentage cleavage varied with pre-denaturation of Rz and substrate, incubation temperature, length of incubation and ribozyme (Rz)-to-substrate ratio. One Rz with two catalytic units and 60 nucleotides of complementary sequence in 3 regions was shown to most efficiently cleave the substrate under allin vitro conditions tested. This ribozyme cleaved better than the two single ribozymes from which it was made. The superior cleaving ability of this Rz was shown to be due to the accessibility of the chosen target site and to the increased length of the hybridizing arms spanning this accessible region of the RNA.  相似文献   

4.
The natural substrate cleaved by the hepatitis delta virus (HDV) ribozyme contains a 3',5'-phosphodiester linkage at the cleavage site; however, a 2',5'-linked ribose-phosphate backbone can also be cleaved by both trans-acting and self-cleaving forms of the HDV ribozyme. With substrates containing either linkage, the HDV ribozyme generated 2',3'-cyclic phosphate and 5'-hydroxyl groups suggesting that the mechanisms of cleavage in both cases were by a nucleophilic attack on the phosphorus center by the adjacent hydroxyl group. Divalent metal ion was required for cleavage of either linkage. However, although the 3',5'-linkage was cleaved slightly faster in Ca2+ than in Mg2+, the 2',5'-linkage was cleaved in Mg2+ (or Mn2+) but not Ca2+. This dramatic difference in metal-ion specificity is strongly suggestive of a crucial metal-ion interaction at the active site. In contrast to the HDV ribozymes, cleavage at a 2',5'-phosphodiester bond was not efficiently catalyzed by the hammerhead ribozyme. The relaxed linkage specificity of the HDV ribozymes may be due in part to lack of a rigid binding site for sequences 5' to the cleavage site.  相似文献   

5.
6.
The previously described HIV-1 directed hammerhead ribozyme 2as-Rz12 can form with its target RNA 2s helices I and III of 128 and 278 base pairs (bp). A series of derivatives was made in which helix III was truncated to 8, 5, 4, 3, and 2 nucleotides (nt). These asymmetric hammerhead ribozymes were tested for in vitro cleavage and for inhibition of HIV-1 replication in human cells. Truncation of helix III to 8 bp did not affect the in vitro cleavage potential of the parental catalytic antisense RNA 2as-Rz12. Further truncation of helix III led to decreased cleavage rates, with no measurable cleavage activity for the 2 bp construct. All catalytically active constructs showed complex cleavage kinetics. Three kinetic subpopulations of ribozyme-substrate complexes could be discriminated that were cleaved with fast or slow rates or not at all. Gel purification of preformed ribozyme-substrate complexes led to a significant increase in cleavage rates. However, the complex cleavage pattern remained. In mammalian cells, the helix III-truncated constructs showed the same but no increased inhibitory effect of the comparable antisense RNA on HIV-1 replication.  相似文献   

7.
8.
9.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

10.
11.
A hammerhead ribozyme directed against murine TNFalpha (mTNFalpha) mRNA has been constructed. In vitro studies showed that this ribozyme was released from the parent molecule by flanking cis-acting hammerhead and hairpin ribozymes. This same anti-mTNFalpha ribozyme specifically cleaved both synthetically derived substrate RNA and mTNFalpha mRNA within a pool of total cellular RNA. Endogenous delivery of this anti-mTNFalpha ribozyme via the self-cleaving cassette reduced mTNFalpha mRNA and protein levels in lipopolysaccharide (LPS)-stimulated, stably transfected murine macrophage RAW 264.7 cells. When complexed to liposomes and exogenously delivered to mouse peritoneal macrophages, the same ribozyme, with and without the cis-acting ribozymes, reduced mTNFalpha protein levels. However, an irrelevant ribozyme delivered in an identical fashion was also effective at reducing mTNFalpha protein levels. These data suggest that anti-mTNFalpha ribozymes can be constructed which efficiently cleave mTNFalpha mRNA, but irrelevant RNA/liposome complexes also effectively limit TNFalpha mRNA expression and can mimic functional ribozyme activity under in vitro conditions.  相似文献   

12.
Ribozymes have a great potential for developing specific gene silencing molecules. One of the main limitations to ensure the efficient application of ribozymes is to achieve effective binding to the target. Stem-loop domains support efficient formation of the kissing complex between natural antisense molecules and their target sequence. We have characterized catalytic antisense RNA hybrid molecules composed of a hammerhead ribozyme and a stem-loop antisense domain. A series of artificial RNA substrates containing the TAR-RNA stem-loop and a target for the hammerhead ribozyme were constructed and challenged with a catalytic antisense RNA carrying the TAR complementary stem-loop. The catalytic antisense RNA cleaves each of these substrates significantly more efficiently than the parental hammerhead ribozyme. Deletion of the TAR domain in the substrate abolishes the positive effect. These results suggest that the enhancement is due to the interaction of both complementary stem-loop motifs. A similar improvement was corroborated when targeting the LTR region of HIV-1 with either hammerhead- and hairpin-based catalytic antisense RNAs. Our results indicate that the TAR domain can be used as an anchoring site to facilitate the access of ribozymes to their specific target sequences within TAR-containing RNAs. Finally, we propose the addition of stable stem-loop motifs to the ribozyme domain as a rational way for constructing catalytic antisense RNAs.  相似文献   

13.
双位点核酶对乙型肝炎病毒C基因体外转录物的剪切作用   总被引:1,自引:0,他引:1  
为探讨双位点核酶对乙型肝炎病毒C基因体外转录物的剪切作用,观察双位点核酶对单一核酶体外剪切的增强作用,同时比较串联核酶和混合核酶的体外切割作用,构建了核酶Rz1,Rz3, Rz1和Rz3的串联核酶(Rz13)体外转录载体, 经体外转录后切割靶RNA. 结果表明:双位点核酶,无论是串联或混合核酶均可增强单一核酶的体外切割作用, 串联和混合核酶中的单一核酶可独立发挥作用;当串联和混合数目为2个时,两者的切割效率差别不大(P>0.05).  相似文献   

14.
利用计算机模拟设计合成了针对 K5 62细胞致癌融合 bcr3/abl2 m RNA的锤头状核酶 .该核酶以融合点附近 UUC为识别切割三联体 ,在核酶的 3′端增加一段 T7噬菌体终止子序列 .用基因克隆结合体外转录的方法 ,肯定了核酶的体外切割活性 .进而将核酶基因克隆到 p CEP4真核细胞高效表达载体上 ,利用脂质体 Lipofectin AMINE介导的转染技术将核酶与核酶基因导入靶细胞 ,从抑制靶细胞 K5 62的增殖与集落形成及引起靶细胞凋亡等方面验证了核酶在细胞水平上对融合基因 bcr3/abl2 m RNA的特异切割作用 ,并观察到了 T7噬菌体终止子序列对核酶切割效率的增强影响 .  相似文献   

15.
16.
17.
将苹果锈果类病毒的1个14nt的靶序列连接在锤头型核酶的3′末端,构成自切割核酶。经人工合成和PCR扩增,克隆在转录载体pGEM7zf(+)的XhoⅠ-Hind Ⅲ位点。利用限制酶Xho I与SalI的连接,消失其识别位点序列,将自切割核酶片段插入到重组质粒中,经连续5次亚克隆,分别获得2、4、6、8、10和12拷贝的多体自切割核酶。在T7RNA聚合酶作用下,线性化重组质粒转录的多体自切割核酶通过内部的顺式切割释放出较多数量的核酶分子,提示在转录水平能够提高核酶转录物的浓度。用相同摩尔浓度的单体和12体自切割核酶分别对32P标记的靶ASSVd进行反式切割,核酶与靶RNA摩尔浓度比为1:1。放射自显影结果表明:多体自切割核酶对靶ASSVd的切割效率明显高于单体自切割核酶。我们推测多体自切割核酶在体内系统中可能具有更好的应用价值。  相似文献   

18.
Dynamic interactions between hammerhead ribozymes and RNA substrates were measured using the surface plasmon resonance (SPR) technology. Two in vitro transcribed substrates (non-cleavable and cleavable) were immobilised on streptavidin-coated dextran matrices and subsequently challenged with non-related yeast tRNA or two hammerhead ribozymes, both of which had previously been shown to exhibit functional binding and cleavage of complementary target RNAs. The target-binding domain of one of the ribozymes was fully complementary to a 16-ribonucleotide stretch on the immobilised substrates, while the other ribozyme had a nine-ribonucleotide complementarity. The two ribozymes could readily be differentiated with regard to affinity. Cleavage could be measured, using the ribozyme with full target complementarity to the cleavable substrate. In contrast, the ribozyme with lower affinity lacked cleavage activity. We suggest that SPR will be useful for investigations of ribozyme-substrate interactions.  相似文献   

19.
The hammerhead ribozyme is able to cleave RNA in a sequence-specific manner. These ribozymes are usually designed with four basepairs in helix II, and with equal numbers of nucleotides in the 5′ and 3′ hybridizing arms that bind the RNA substrate on either side of the cleavage site. Here guidelines are given for redesigning the ribozyme so that it is small, but retains efficient cleavage activity. First, the ribozyme may be reduced in size by shortening the 5′ arm of the ribozyme to five or six nucleotides; for these ribozymes, cleavage of short substrates is maximal. Second, the internal double-helix of the ribozyme (helix II) may be shortened to one or no basepairs, forming a miniribozyme or minizyme, respectively. The sequence of the shortened helix+loop II greatly affects cleavage rates. With eight or more nucleotides in both the 5′ and the 3′ arms of a miniribozyme containing an optimized sequence for helix+loop II, cleavage rates of short substrates are greater than for analogous ribozymes possessing a longer helix II. Cleavage of genelength RNA substrates may be best achieved by miniribozymes.  相似文献   

20.
Toward gene therapy for the treatment of human immunodeficiency virus type 1 (HIV-1) infections in AIDS, Moloney murine leukemia virus-derived retroviral vectors were engineered to allow constitutive and tat-inducible expression of an HIV-1 5' leader sequence-specific ribozyme (Rz1). These vectors were used to infect the human CD4+ lymphocyte-derived MT4 cell line. The stable MT4 transformants expressing an HIV-1 RNA-specific ribozyme, under the control of the herpes simplex virus thymidine kinase (tk) promoter, were found to be somewhat resistant to HIV-1 infection as virus production was delayed. In cells allowing ribozyme expression under control of the simian virus 40 or cytomegalovirus promoter, the rate of HIV-1 multiplication was slightly decreased, and virus production was delayed by about 14 days. The highest level of resistance to HIV-1 infection was observed in MT4 cells transformed with a vector containing a fusion tk-TAR (trans activation-responsive) promoter to allow ribozyme expression in a constitutive and tat-inducible manner; no HIV-1 production was observed 22 days after infection of these cells. These results indicate that retroviral vectors expressing HIV-1 RNA-specific ribozymes can be used to confer resistance to HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号