首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report, we describe the isolation, molecular genetic mapping, and phenotypic characterization of vaccinia virus mutants resistant to cytosine arabinoside (araC) and phosphonoacetic acid (PAA). At 37 degrees C, 8 microM araC was found to prevent macroscopic plaque formation by wild-type virus and to cause a 10(4)-fold reduction in viral yield. Mutants resistant to 8 microM araC were selected by serial passage of a chemically mutagenized viral stock in the presence of drug. Because recovery of mutants required that initial passages be performed under less stringent selective conditions, and because plaque-purified isolates were found to be cross-resistant to 200 micrograms of PAA per ml, it seemed likely that resistance to araC required more than one genetic lesion. This hypothesis was confirmed by genetic and physical mapping of the responsible mutations. PAAr was accorded by the acquisition of one of three G-A transitions in the DNA polymerase gene which individually alter cysteine 356 to tyrosine, glycine 372 to aspartic acid, or glycine 380 to serine. AraCr was found to require one of these substitutions plus an additional T-C transition within codon 171 of the DNA polymerase gene, a change which replaces the wild-type phenylalanine with serine. Congenic viral stocks carrying one of the three PAAr lesions, either alone or in conjunction with the upstream araCr lesion, in an otherwise wild-type background were generated. The PAAr mutations conferred nearly complete resistance to PAA, a slight degree of resistance to araC, hypersensitivity to aphidicolin, and decreased spontaneous mutation frequency. Addition of the mutation at codon 171 significantly augmented araC resistance and aphidicolin hypersensitivity but caused no further change in mutation frequency. Several lines of evidence suggest that the PAAr mutations primarily affect the deoxynucleoside triphosphate-binding site, whereas the codon 171 mutation, lying within a conserved motif associated with 3'-5' exonuclease function, is postulated to affect the proofreading exonuclease of the DNA polymerase.  相似文献   

2.
3.
Eight independently derived mouse cytomegalovirus (MCMV) mutants resistant to acyclovir (ACV) were obtained by the sequential plating of wild-type virus in increasing concentrations of ACV. Results of complementation studies among these eight mutants suggest that all had mutations within the same or closely associated genes. A ninth MCMV mutant resistant to phosphonoacetate (PAA) derived by plating wild-type virus in the presence of 100 micrograms of PAA per ml displayed coresistance to ACV and was unable to complement any of the ACV-derived mutants. Recombination experiments among all combinations of the nine MCMV mutants were performed and supported the complementation data in that no recombination could be detected. Seven of the eight ACV-resistant mutants demonstrated cross-resistance to PAA and hypersensitivity to aphidicolin. The one mutant not coresistant to PAA was more susceptible to PAA than was the parent virus. Only a few mutants demonstrated coresistance when the mutants were tested against 9-beta-D-arabinofuranosyladenine (ara-A). The ACV mutant that demonstrated increased susceptibility to PAA was 30-fold more susceptible to ara-A but remained unchanged in susceptibility to aphidicolin. Two of the parent-mutant combinations were selected for DNA synthesis analysis in the presence of ACV (5 microM). A significant decrease in DNA synthesis was demonstrated for both parent viruses, and there was little effect on mutant virus DNA synthesis at the same drug concentration. These results suggest that susceptibility of MCMV to ACV is confined to a product of a single gene and that a mutation of this gene can lead to an altered phenotype when compared with parent virus in susceptibility of DNA synthesis to PAA, ara-A, and aphidicolin, drugs that are known to inhibit DNA polymerase activity.  相似文献   

4.
Watanabe K  Yamagishi A 《FEBS letters》2006,580(16):3867-3871
Previously, we showed that mutants of Thermus thermophilus 3-isopropylmalate dehydrogenase (IPMDH) each containing a residue (ancestral residue) that had been predicted to exist in a postulated common ancestor protein often have greater thermal stabilities than does the contemporary wild-type enzyme. In this study, the combined effects of multiple ancestral residues were analyzed. Two mutants, containing multiple mutations, Sup3mut (Val181Thr/Pro324Thr/Ala335Glu) and Sup4mut (Leu134Asn/Val181Thr/Pro324Thr/Ala335Glu) were constructed and show greater thermal stabilities than the wild-type and single-point mutant IPMDHs do. Most of the mutants have similar or improved catalytic efficiencies at 70 degrees C when compared with the wild-type IPMDH.  相似文献   

5.
Mutations in five phenotypically distinct mutants derived from herpes simplex virus type 1 strain KOS which lie in or near the herpes simplex virus DNA polymerase (pol) locus have been fine mapped with the aid of cloned fragments of mutant and wild-type viral DNAs to distinct restriction fragments of 1.1 kilobase pairs (kbp) or less. DNA sequences containing a mutation or mutations conferring resistance to the antiviral drugs phosphonoacetic acid, acyclovir, and arabinosyladenine of pol mutant PAAr5 have been cloned as a 27-kbp Bg+II fragment in Escherichia coli. These drug resistance markers have been mapped more finely in marker transfer experiments to a 1.1-kbp fragment (coordinates 0.427 to 0.434). In intratypic marker rescue experiments, temperature-sensitive (ts), phosphonoacetic acid resistance, and acyclovir resistance markers of pol mutant tsD9 were mapped to a 0.8-kbp fragment at the left end of the EcoRI M fragment (coordinates 0.422 to 0.427). The ts mutation of pol mutant tsC4 maps within a 0.3-kbp sequence (coordinates 0.420 to 0.422), whereas that of tsC7 lies within the 1.1-kbp fragment immediately to the left (coordinates 0.413 to 0.420). tsC4 displays the novel phenotype of hypersensitivity to phosphonoacetic acid; however, the phosphonoacetic acid hypersensitivity phenotype is almost certainly not due to the mutation(s) conferring temperature sensitivity. The ts mutation of mutant tsN20--which does not affect DNA polymerase activity--maps to a 0.5-kbp fragment at the right-hand end of the EcoRI M fragment (coordinates 0.445 to 0.448). The mapping of the mutations in these five mutants further defines the limits of the pol locus and separates mutations differentially affecting catalytic functions of the polymerase.  相似文献   

6.
Topoisomerase II (Top2) is the primary target for active anti-cancer agents. We developed an efficient approach for identifying hypersensitive Top2 mutants and isolated a panel of mutants in yeast Top2 conferring hypersensitivity to the intercalator N-[4-(9-acridinylamino)-3-methoxyphenyl]methanesulphonanilide (mAMSA). Some mutants conferred hypersensitivity to etoposide as well as mAMSA, whereas other mutants exhibited hypersensitivity only to mAMSA. Two mutants in Top2, changing Pro(473) to Leu and Gly(737) to Val, conferred extraordinary hypersensitivity to mAMSA and were chosen for further characterization. The mutant proteins were purified, and their biochemical activities were assessed. Both mutants encode enzymes that are hypersensitive to inhibition by mAMSA and other intercalating agents and exhibited elevated levels of mAMSA-induced Top2:DNA covalent complexes. While Gly(737) --> Val Top2p generated elevated levels of Top2-mediated double strand breaks in vitro, the Pro(473) --> Leu mutant protein showed only a modest increase in Top2-mediated double strand breaks but much higher levels of Top2-mediated single strand breaks. In addition, the Pro(473) --> Leu mutant protein also generated high levels of mAMSA-stabilized covalent complexes in the absence of ATP. We tested the role of single strand cleavage in cell killing with alleles of Top2 that could generate single strand breaks, but not double strand breaks. Expression in yeast of a Pro(473) --> Leu mutant that could only generate single strand breaks conferred hypersensitivity to mAMSA. These results indicate that generation of single strand breaks by Top2-targeting agents can be an important component of cell killing by Top2-targeting drugs.  相似文献   

7.
Seven herpes simplex virus mutants which have been previously shown to be resistant to arabinosyladenine were examined for their sensitivities to four types of antiviral drugs. These drugs were a pyrophosphate analog, four nucleoside analogs altered in their sugar moieties, two nucleoside analogs altered in their base moieties, and one altered in both. The seven mutants exhibited five distinct phenotypes based on their sensitivities to the drugs relative to wild-type strain KOS. All mutants exhibited resistance to acyclovir and arabinosylthymine, as well as marginal resistance to iododeoxyuridine, whereas all but one exhibited resistance to phosphonoformic acid. The mutants exhibited either sensitivity or hypersensitivity to other drugs tested--2'-nor-deoxyguanosine, 5-methyl-2'-fluoroarauracil, 5-iodo-2'-fluoroarauracil, and bromovinyldeoxyuridine--some of which differed only slightly from drugs to which the mutants were resistant. These results suggest ways to detect and treat arabinosyladenine-resistant isolates in the clinic. Antiviral hypersensitivity was a common phenotype. Mutations conferring hypersensitivity to 2'-nor-deoxyguanosine in mutant PAAr5 and to bromovinyldeoxyridine in mutant tsD9 were mapped to nonoverlapping regions of 1.1 and 0.8 kilobase pairs, respectively, within the herpes simplex virus DNA polymerase locus. Thus, viral DNA polymerase mediates sensitivity to these two drugs. However, we could not confirm reports of mutations in the DNA polymerase locus conferring resistance to these two drugs. All of the mutants exhibited altered sensitivity to two or more types of drugs, suggesting that single mutations affect recognition of the base, sugar, and triphosphate moieties of nucleoside triphosphates by viral polymerase.  相似文献   

8.
We describe the mapping and sequencing of mutations within the DNA polymerase gene of herpes simplex virus type 1 which confer resistance to aphidicolin, a DNA polymerase inhibitor. The mutations occur near two regions which are highly conserved among DNA polymerases related to the herpes simplex enzyme. They also occur near other herpes simplex mutations which affect the interactions between the polymerase and deoxyribonucleoside triphosphate substrates. Consequently, we argue in favor of the idea that the aphidicolin binding site overlaps the substrate binding site and that the near-by conserved regions are functionally required for substrate binding. Our mutants also exhibit abnormal sensitivity to another DNA polymerase inhibitor, phosphonoacetic acid. This drug is thought to bind as an analogue of pyrophosphate. A second-site mutation which suppresses the hypersensitivity of one mutant to phosphonoacetic acid (but not its aphidicolin resistance) is described. This second mutation may represent a new class of mutations, which specifically affects pyrophosphate, but not substrate, binding.  相似文献   

9.
Fourteen mutants known or likely to contain mutations in the herpes simplex virus DNA polymerase gene were examined for their sensitivity to aphidicolin in plaque reduction assays. Eleven of these exhibited some degree of hypersensitivity to the drug; altered aphidicolin-sensitivity correlated with altered sensitivity to the pyrophosphate analog, phosphonoacetic acid. The DNA polymerase specified by one of these mutants, PAAr5, required roughly seven-fold less aphidicolin to inhibit its activity by 50% than did polymerase specified by its parental strain. Mutations responsible for the aphidicolin-hypersensitivity phenotype of PAAr5 were mapped to an 0.8 kbp region in the herpes simplex virus DNA polymerase locus. These data taken together indicate that 1) mutations in the herpes simplex virus DNA polymerase gene can confer altered sensitivity to aphidicolin, 2) that the HSV polymerase is sensitive to aphidicolin in vivo, and 3) that amino acid alterations which affect aphidicolin binding may affect the pyrophosphate exchange-release site as well, suggesting that aphidicolin binds in close proximity to this site.  相似文献   

10.
Packing interactions in bacteriophage T4 lysozyme were explored by determining the structural and thermodynamic effects of substitutions for Ala98 and neighboring residues. Ala98 is buried in the core of T4 lysozyme in the interface between two alpha-helices. The Ala98 to Val (A98V) replacement is a temperature-sensitive lesion that lowers the denaturation temperature of the protein by 15 degrees C (pH 3.0, delta delta G = -4.9 kcal/mol) and causes atoms within the two helices to move apart by up to 0.7 A. Additional structural shifts also occur throughout the C-terminal domain. In an attempt to compensate for the A98V replacement, substitutions were made for Val149 and Thr152, which make contact with residue 98. Site-directed mutagenesis was used to construct the multiple mutants A98V/T152S, A98V/V149C/T152S and the control mutants T152S, V149C and A98V/V149I/T152S. These proteins were crystallized, and their high-resolution X-ray crystal structures were determined. None of the second-site substitutions completely alleviates the destabilization or the structural changes caused by A98V. The changes in stability caused by the different mutations are not additive, reflecting both direct interactions between the sites and structural differences among the mutants. As an example, when Thr152 in wild-type lysozyme is replaced with serine, the protein is destabilized by 2.6 kcal/mol. Except for a small movement of Val94 toward the cavity created by removal of the methyl group, the structure of the T152S mutant is very similar to wild-type T4 lysozyme. In contrast, the same Thr152 to Ser replacement in the A98V background causes almost no change in stability. Although the structure of A98V/T152S remains similar to A98V, the combination of T152S with A98V allows relaxation of some of the strain introduced by the Ala98 to Val replacement. These studies show that removal of methyl groups by mutation can be stabilizing (Val98----Ala), neutral (Thr152----Ser in A98V) or destabilizing (Val149----Cys, Thr152----Ser). Such diverse thermodynamic effects are not accounted for by changes in buried surface area or free energies of transfer of wild-type and mutant side-chains. In general, the changes in protein stability caused by a mutation depend not only on changes in the free energy of transfer associated with the substitution, but also on the structural context within which the mutation occurs and on the ability of the surrounding structure to relax in response to the substitution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
An aphidicolin-resistant (Aphr) mutant of herpes simplex virus (HSV) type 2 strain 186 previously has been shown to induce an altered viral DNA polymerase that is more resistant to aphidicolin and more sensitive to phosphonoacetic acid (PAA) than is wild-type DNA polymerase. In this study the mutation responsible for the aphidicolin-resistant phenotype was physically mapped by marker transfer experiments. The physical map limits for the Aphr mutation were contained in a 1.1-kilobase pair region within the HSV DNA polymerase locus. The 1.1-kilobase-pair fragment of the Aphr mutant also conferred hypersensitivity to PAA, and DNA sequence analysis revealed an AT to GC transition within this fragment of the Aphr mutant. Analysis of the three potential open reading frames within the 1,147-base-pair fragment and comparison with the amino acid sequence of DNA polymerase of HSV type 1 indicated that the Aphr mutant polymerase had an amino acid substitution from a tyrosine to a histidine in the well-conserved region of the DNA polymerase. These results indicate that this single amino acid change can confer altered sensitivity to aphidicolin and PAA and suggest that this region may form a domain that contains the binding sites for substrates, PPi, and aphidicolin.  相似文献   

12.
Biotinylation in vivo is an extremely selective post-translational event where the enzyme biotin protein ligase (BPL) catalyzes the covalent attachment of biotin to one specific and conserved lysine residue of biotin-dependent enzymes. The biotin-accepting lysine, present in a conserved Met-Lys-Met motif, resides in a structured domain that functions as the BPL substrate. We have employed phage display coupled with a genetic selection to identify determinants of the biotin domain (yPC-104) of yeast pyruvate carboxylase 1 (residues 1075-1178) required for interaction with BPL. Mutants isolated using this strategy were analyzed by in vivo biotinylation assays performed at both 30 degrees C and 37 degrees C. The temperature-sensitive substrates were reasoned to have structural mutations, leading to compromised conformations at the higher temperature. This interpretation was supplemented by molecular modeling of yPC-104, since these mutants mapped to residues involved in defining the structure of the biotin domain. In contrast, substitution of the Met residue N-terminal to the target lysine with either Val or Thr produced mutations that were temperature-insensitive in the in vivo assay. Furthermore, these two mutant proteins and wild-type yPC-104 showed identical susceptibility to trypsin, consistent with these substitutions having no structural effect. Kinetic analysis of enzymatic biotinylation using purified Met --> Thr/Val mutant proteins with both yeast and Escherichia coli BPLs revealed that these substitutions had a strong effect upon K(m) values but not k(cat). The Met --> Thr mutant was a poor substrate for both BPLs, whereas the Met --> Val substitution was a poor substrate for bacterial BPL but had only a 2-fold lower affinity for yeast BPL than the wild-type peptide. Our data suggest that substitution of Thr or Val for the Met N-terminal of the biotinyl-Lys results in mutants specifically compromised in their interaction with BPL.  相似文献   

13.
We studied the mutation effect of one of the putative loop residues Thr792 in human DNA topoisomerase II alpha (TOP2 alpha). Thr792 mutants were expressed from high or low copy plasmids in a temperature sensitive yeast strain deficient in TOP2 (top2-1). When expressed from a high copy plasmid, mutants with small side chains complemented the yeast defect; however, from a low copy plasmid, only wild-type, Ser, and Cys substitution mutants complemented the yeast defect. Interestingly, at the permissive temperature other mutants (e.g., Val, Gly, and Glu substitutions) showed the dominant negative effect to the top2-1 allele, which was not observed by the control alpha 4-helix mutants. T792E mutant was 10-fold less active than wild-type and the T792P had no decatenation activity in vitro. These results suggest that Thr792 in human TOP2 alpha is involved in enzyme catalysis.  相似文献   

14.
One hope to maintain the benefits of antiviral therapy against the human immunodeficiency virus type 1 (HIV-1), despite the development of resistance, is the possibility that resistant variants will show decreased viral fitness. To study this possibility, HIV-1 variants showing high-level resistance (up to 1,500-fold) to the substrate analog protease inhibitors BILA 1906 BS and BILA 2185 BS have been characterized. Active-site mutations V32I and I84V/A were consistently observed in the protease of highly resistant viruses, along with up to six other mutations. In vitro studies with recombinant mutant proteases demonstrated that these mutations resulted in up to 10(4)-fold increases in the Ki values toward BILA 1906 BS and BILA 2185 BS and a concomitant 2,200-fold decrease in catalytic efficiency of the enzymes toward a synthetic substrate. When introduced into viral molecular clones, the protease mutations impaired polyprotein processing, consistent with a decrease in enzyme activity in virions. Despite these observations, however, most mutations had little effect on viral replication except when the active-site mutations V32I and I84V/A were coexpressed in the protease. The latter combinations not only conferred a significant growth reduction of viral clones on peripheral blood mononuclear cells but also caused the complete disappearance of mutated clones when cocultured with wild-type virus on T-cell lines. Furthermore, the double nucleotide mutation I84A rapidly reverted to I84V upon drug removal, confirming its impact on viral fitness. Therefore, high-level resistance to protease inhibitors can be associated with impaired viral fitness, suggesting that antiviral therapies with such inhibitors may maintain some clinical benefits.  相似文献   

15.
The core promoter mutants of hepatitis B virus (HBV) emerge as the dominant viral population at the late HBeAg and the anti-HBe stages of HBV infection, with the A1762T/G1764A substitutions as the hotspot mutations. The double core promoter mutations were found by many investigators to moderately enhance viral genome replication and reduce hepatitis B e antigen (HBeAg) expression. A much higher replication capacity was reported for a naturally occurring core promoter mutant implicated in the outbreak of fulminant hepatitis, which was caused by the neighboring C1766T/T1768A mutations instead. To systemically study the biological properties of naturally occurring core promoter mutants, we amplified full-length HBV genomes by PCR from sera of HBeAg(+) individuals infected with genotype A. All 12 HBV genomes derived from highly viremic sera (5 x 10(9) to 5.7 x 10(9) copies of viral genome/ml) harbored wild-type core promoter sequence, whereas 37 of 43 clones from low-viremia samples (0.2 x 10(7) to 4.6 x 10(7) copies/ml) were core promoter mutants. Of the 11 wild-type genomes and 14 core promoter mutants analyzed by transfection experiments in human hepatoma cell lines, 6 core promoter mutants but none of the wild-type genomes replicated at high levels. All had 1762/1764 mutations and an additional substitution at position 1753 (T to C), at position 1766 (C to T), or both. Moreover, these HBV clones varied greatly in their ability to secrete enveloped viral particles irrespective of the presence of core promoter mutations. High-replication clones with 1762/1764/1766 or 1753/1762/1764/1766 mutations expressed very low levels of HBeAg, whereas high-replication clones with 1753/1762/1764 triple mutations expressed high levels of HBeAg. Experiments with site-directed mutants revealed that both 1762/1764/1766 and 1753/1762/1764/1766 mutations conferred significantly higher viral replication and lower HBeAg expression than 1762/1764 mutations alone, whereas the 1753/1762/1764 triple mutant displayed only mild reduction in HBeAg expression similar to the 1762/1764 mutant. Thus, core promoter mutations other than those at positions 1762 and 1764 can have major impact on viral DNA replication and HBeAg expression.  相似文献   

16.
Administration of either lamivudine (2'-deoxy-3'-thiacytidine) or L-FMAU (2'-fluoro-5-methyl-beta-L-arabinofuranosyluracil) to woodchucks chronically infected with woodchuck hepatitis virus (WHV) induces a transient decline in virus titers. However, within 6 to 12 months, virus titers begin to increase towards pretreatment levels. This is associated with the emergence of virus strains with mutations of the B and C regions of the viral DNA polymerase (T. Zhou et al., Antimicrob. Agents Chemother. 43:1947-1954, 1999; Y. Zhu et al., J. Virol. 75:311-322, 2001). The present study was carried out to determine which of the mutants that we have identified conferred resistance to lamivudine and/or to L-FMAU. When inserted into a laboratory strain of WHV, each of the mutations, or combinations of mutations, of regions B and C produced a DNA replication-competent virus and typically conferred resistance to both nucleoside analogs in cell culture. Sequencing of the polymerase active site also occasionally revealed other mutations, but these did not appear to contribute to drug resistance. Moreover, in transfected cells, most of the mutants synthesized viral DNA nearly as efficiently as wild-type WHV. Computational models suggested that persistence of several of the WHV mutants as prevalent species in the serum and, by inference, liver for up to 6 months following drug withdrawal required a replication efficiency of at least 10 to 30% of that of the wild type. However, their delayed emergence during therapy suggested replication efficiency in the presence of the drug that was still well below that of wild-type WHV in the absence of the drug.  相似文献   

17.
Vaccinia virus growth in BSC-1 and HeLa cells was inhibited by aphidicolin concentrations of 20 microM or more. Virus yield, which decreased only when the drug was added early in infection, was reduced several 100-fold by 80 microM aphidicolin. Viral inhibition was reversed by the suspension of the infected cells in drug-free medium. DNA synthesis in uninfected cells was reduced about 10-fold by 1 microM aphidicolin. In infected cells, aphidicolin concentrations over 10 microM were needed to reduce DNA synthesis to the same extent as in uninfected cells. Fractionation of infected cells which were incubated with 1 microM drug showed that cytoplasmic viral DNA synthesis was resistant to this aphidicolin concentration. The radioactivity associated with crude nuclei from these cells was estimated to be from vaccinia DNA synthesis. Spontaneous virus mutants which were resistant to 80 microM aphidicolin did not appear. However, after mutagenesis, mutants were generated which formed large plaques in medium with 80 microM drug. In cells with replicating aphidicolin-resistant virus, DNA synthesis was about four times more resistant to 80 microM aphidicolin than in cells with replicating wild-type virus. Chromatographic patterns of viral DNA polymerase isolated from cells with wild-type or resistant virus were similar. However, in an in vitro assay, 50% inhibition of enzyme activity was obtained with ca. 75 and 188 microM aphidicolin for the wild-type and resistant DNA polymerases, respectively. Viral enzymes were much more resistant to the drug than were the cell polymerases.  相似文献   

18.
VX-950 is a potent, small molecule, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease and has recently been shown to possess antiviral activity in a phase I trial in patients chronically infected with genotype 1 HCV. In a previous study, we described in vitro resistance mutations against either VX-950 or another HCV NS3.4A protease inhibitor, BILN 2061. Single amino acid substitutions that conferred drug resistance (distinct for either inhibitor) were identified in the HCV NS3 serine protease domain. The dominant VX-950-resistant mutant (A156S) remains sensitive to BILN 2061. The major BILN 2061-resistant mutants (D168V and D168A) are fully susceptible to VX-950. Modeling analysis suggested that there are different mechanisms of resistance for these mutations induced by VX-950 or BILN 2061. In this study, we identified mutants that are cross-resistant to both HCV protease inhibitors. The cross-resistance conferred by substitution of Ala(156) with either Val or Thr was confirmed by characterization of the purified enzymes and reconstituted replicon cells containing the single amino acid substitution A156V or A156T. Both cross-resistance mutations (A156V and A156T) displayed significantly diminished fitness (or replication capacity) in a transient replicon cell system.  相似文献   

19.
MID1 catalyzes the ubiquitination of the protein alpha4 and the catalytic subunit of protein phosphatase 2A. Mutations within the MID1 Bbox1 domain are associated with X-linked Opitz G syndrome (XLOS). Our functional assays have shown that mutations of Ala130 to Val or Thr, Cys142 to Ser and Cys145 to Thr completely disrupt the polyubiquitination of alpha4. Using NMR spectroscopy, we characterize the effect of these mutations on the tertiary structure of the Bbox1 domain by itself and in tandem with the Bbox2 domain. The mutation of either Cys142 or Cys145, each of which is involved in coordinating one of the two zinc ions, results in the collapse of signal dispersion in the HSQC spectrum of the Bbox1 domain indicating that the mutant protein structure is unfolded. Each mutation caused the coordination of both zinc ions, which are ∼13 Å apart, to be lost. Although Ala130 is not involved in the coordination of a zinc ion, the Ala130Thr mutant Bbox1 domain yields a poorly dispersed HSQC spectrum similar to those of the Cys142Ser and Cys145Thr mutants. Interestingly, neither cysteine mutation affects the structure of the adjacent Bbox2 domain when the two Bbox domains are engineered in their native tandem Bbox1-Bbox2 protein construct. Dynamic light scattering measurements suggest that the mutant Bbox1 domain has an increased propensity to form aggregates compared to the wild type Bbox1 domain. These studies provide insight into the mechanism by which mutations observed in XLOS affect the structure and function of the MID1 Bbox1 domain.  相似文献   

20.
Temperature-sensitive (ts) mutations have been used as a genetic and molecular tool to study the functions of many gene products. Each ts mutant protein may contain a temperature-dependent intramolecular mechanism such as ts conformational change. To identify key ts structural elements controlling the protein function, we screened ts p53 mutants from a comprehensive mutation library consisting of 2,314 p53 missense mutations for their sequence-specific transactivity through p53-binding sequences in Saccharomyces cerevisiae. We isolated 142 ts p53 mutants, including 131 unreported ts mutants. These mutants clustered in beta-strands in the DNA-binding domain, particularly in one of the two beta-sheets of the protein, and 15 residues (Thr155, Arg158, Met160, Ala161, Val172, His214, Ser215, Pro223, Thr231, Thr253, Ile254, Thr256, Ser269, Glu271, and Glu285) were ts hot spots. Among the 142 mutants, 54 were examined further in human osteosarcoma Saos-2 cells, and it was confirmed that 89% of the mutants were also ts in mammalian cells. The ts mutants represented distinct ts transactivities for the p53 binding sequences and a distinct epitope expression pattern for conformation-specific anti-p53 antibodies. These results indicated that the intramolecular beta-sheet in the core DNA-binding domain of p53 was a key structural element controlling the protein function and provided a clue for finding a molecular mechanism that enables the rescue of the mutant p53 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号