首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An azo dye-degrading bacterium, Caulobacter subvibrioides strain C7-D, semi-constitutively produces an azoreductase that reduced the azo bond of the dyes Acid Orange (AO) 6, AO7, AO8, AO12, Acid Red (AR) 88, AR151, and Methyl Red (MR). This activity was oxygen insensitive. Of the dyes tested, AO7 was the best inducer and the most rapidly reduced substrate suggesting that dye AO7 most closely mimics the natural physiological substrate for this enzyme. The K m for AO7 was 1 μM. Purification of the azoreductase from C. subvibrioides strain C7-D was achieved through dye-ligand affinity chromatography using the dye Orange-A covalently coupled to an agarose support. The azoreductase is approximately 30 kDa and enzyme studies indicate a single azoreductase. The optimal activity, pH, cofactor usage, substrate specificity, molecular weight and K m characteristics of the enzyme set it apart from other known oxygen-insensitive azoreductases. Received 18 May 1999/ Accepted in revised form 13 July 1999  相似文献   

2.
Bacterial Decolorization of Azo Dyes by Rhodopseudomonas palustris   总被引:1,自引:0,他引:1  
Summary The ability of Rhodopseudomonas palustris AS1.2352 possessing azoreductase activity to decolorize azo dyes was investigated. It was demonstrated that anaerobic conditions were necessary for bacterial decolorization, and the optimal pH and temperature were pH 8 and 30–35 °C, respectively. Decolorization of dyes with different molecular structures was performed to compare their degradability. The strain could decolorize azo dye up to 1250 mg l−1, and the correlation between the specific decolorization rate and dye concentration could be described by Michaelis–Menten kinetics. Long-term repeated operations showed that the strain was stable and efficient during five runs. Cell extracts from the strain demonstrated oxygen-insensitive azoreductase activity in vitro.  相似文献   

3.
Grape seeds were used by Trametes hirsuta as a substrate for laccase production giving 23 kU l–1, which was 10-fold the value attained in the cultures with no lignocellulosic waste addition. The dyes, Indigo Carmine and Bromophenol Blue, were easily decolourised (100% in 24 h) by the extracellular liquid obtained in such cultures, whereas Methyl Orange (65% in 24 h) and Phenol Red (36% in 24 h) were more resistant to degradation. This shows the specificity of laccase towards different dye structures.  相似文献   

4.
The production of manganese-dependent peroxidase (MnP) byPhanerochœte chrysosporium in a new solid-state bioreactor, the immersion bioreactor, operating with lignocellulosic waste, such as wood shavings, was investigated. Maximum MnP and lignin peroxidase (LiP) activity of 13.4 and 8.48 μkat/L were obtained, respectively. Thein vitro decolorization of several synthetic dyes by the extracellular liquid produced in the above-mentioned bioreactor (containing mainly MnP) was carried out and its degrading ability was assessed. The highest decolorization was reached with Indigo Carmine (98%) followed by Bromophenol Blue (56%) and Methyl Orange (36%), whereas Gentian Violet was hardly decolorized (6%).  相似文献   

5.
Microbial fuel cells (MFCs) were constructed using azo dyes as the cathode oxidants to accept the electrons produced from the respiration of Klebsiella pneumoniae strain L17 in the anode. Experimental results showed that a methyl orange (MO)-feeding MFC produced a comparable performance against that of an air-based one at pH 3.0 and that azo dyes including MO, Orange I, and Orange II could be successfully degraded in such cathodes. The reaction rate constant (k) of azo dye reduction was positively correlated with the power output which was highly dependent on the catholyte pH and the dye molecular structure. When pH was varied from 3.0 to 9.0, the k value in relation to MO degradation decreased from 0.298 to 0.016 μmol min−1, and the maximum power density decreased from 34.77 to 1.51 mW m−2. The performances of the MFC fed with different azo dyes can be ranked from good to poor as MO > Orange I > Orange II. Furthermore, the cyclic voltammograms of azo dyes disclosed that the pH and the dye structure determined their redox potentials. A higher redox potential corresponded to a higher reaction rate.  相似文献   

6.
The flavin-free azoreductase from Xenophilus azovorans KF46F (AzoB), which has been the very first characterized oxygen-tolerant azoreductase, was analyzed in comparison to various recently described flavin-containing azoreductases from different bacterial sources. Sequence comparisons demonstrated that the azoreductase from X. azovorans KF46F is a member of the NmrA family of proteins and demonstrates 30% sequence identity with a NADPH-dependent quinone oxidoreductase from Escherichia coli (encoded by ytfG). In contrast, it was found that the flavin-containing azoreductases from E. coli OY1-2 (AZR), Bacillus sp. OY1-2 (AZR) and related azoreductases all belong to the FMN_red superfamily of enzymes. The substrate specificity of AzoB was reanalyzed in respect to the recently characterized flavin-containing azoreductases, and it was found that purified AzoB converted in addition to different ortho-hydroxy azo compounds [such as Orange II = 1-(4′-sulfophenylazo)-2-naphthol] also the simple non-hydroxylated non-sulfonated azo dye Methyl Red (4′-dimethylaminoazobenzene-2-carboxylic acid), but no indications for the conversion of quinones were obtained. Significant differences were observed in the substrate specificities between AzoB and the flavin-containing azoreductases. The kinetic analysis of the turn-over of Orange II by AzoB suggested an ordered bireactant reaction mechanism which was different from the ping-pong mechanism suggested for the flavin-containing azoreductases.  相似文献   

7.
8.
A new customer and environmental friendly method of hair bound dye decolouration was developed. Biotransformation of the azo-dyes Flame Orange and Ruby Red was studied using different oxidoreductases. The pathways of azo dye conversion by these enzymes were investigated and the intermediates and metabolites were identified and characterised using UV–vis spectroscopy, high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Laccase from Pycnoporus cinnabarinus, manganese peroxidase (MnP) from Nematoloma frowardii and the novel Agrocybe aegerita peroxidase (AaP) were found to use a similar mechanism to convert azo dyes. They N-demethylated the dyes and concomitantly polymerized them to some extent. On the other hand the mechanism for cleavage of the azo bond by azo-reductases of Bacillus cereus and B. subtilis was based on reduction of the azo bond at the expense of NAD(P)H.  相似文献   

9.
Decolorization of textile dyes by a laccase from Trametes modesta immobilized on gamma-aluminum oxide pellets was studied. An enzyme reactor was equipped with various UV/Vis spectroscopic sensors allowing the continuous online monitoring of the decolorization reactions. Decolorization of the dye solutions was followed via an immersion transmission probe. Adsorption processes were observed using diffuse reflectance measurements of the solid carrier material. Generally, immobilization of the laccase does not seem to sterically affect dye decolorization. A range of commercial textile dyes was screened for decolorization and it was found that the application of this enzymatic remediation system is not limited to a certain structural group of dyes. Anthrachinonic dyes (Lanaset Blue 2R, Terasil Pink 2GLA), some azo dyes, Indigo Carmine, and the triphenylmethane dye Crystal Violet were efficiently decolorized. However, the laccase displayed pronounced substrate specificities when a range of structurally related model azodyes was subjected to the biotransformation. Azodyes containing hydroxy groups in ortho or para position relative to the azo bond were preferentially oxidized. The reactor performance was studied more closely using Indigo Carmine.  相似文献   

10.
Azoreductase plays a key role in bioremediation and biotransformation of azo dyes. It initializes the reduction of azo bond in azo dye metabolism under aerobic or anaerobic conditions. In the present study, we isolated an alkaliphilic red-colored Aquiflexum sp. DL6 bacterial strain and identified by 16S rRNA method. We report nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent azoreductase purified from Aquiflexum sp. DL6 by a combination of ammonium sulfate precipitation and chromatography methods. The azoreductase was purified up to 30-fold with 37 % recovery. The molecular weight was found to be 80 kDa. The optimum activity was observed at pH 7.4 and temperature 60 °C with amaranth azo dye as a substrate. The thermal stability of azoreductase was up to 80 °C. The azoreductase has shown a wide range of substrate specificity, including azo dyes and nitro aromatic compounds. Metal ions have no significant inhibitory action on azoreductase activity. The apparent K m and V max values for amaranth azo dye were 1.11 mM and 30.77 U/mg protein respectively. This NAD (P) H azoreductase represents the first azoreductase to be characterized from alkaliphilic bacteria.  相似文献   

11.
The capability of Lactobacillus acidophilus and Lactobacillus fermentum to degrade azo dyes was investigated. The bacteria were incubated under anaerobic conditions in the presence of 6 μg/ml Methyl Red, Ponceau BS, Orange G, Amaranth, Orange II, and Direct Blue 15; 5 μg/ml Sudan I and II; or 1.5 μg/ml Sudan III and IV in deMann–Rogosa–Sharpe broth at 37°C for 36 h, and reduction of the dyes was monitored. Both bacteria were capable of degrading all of the water-soluble azo dyes to some extent. They were also able to completely reduce the oil-soluble diazo dyes Sudan III and IV but were unable to reduce the oil-soluble monoazo dyes Sudan I and II to any significant degree in the concentrations studied. Growth of the bacteria was not significantly affected by the presence of the Sudan azo dyes. Metabolites of the bacterial degradation of Sudan III and IV were isolated and identified by liquid chromatography electrospray ionization tandem mass spectrometry analyses and compared with authentic standards. Aniline and o-toluidine (2-methylaniline), both potentially carcinogenic aromatic amines, were metabolites of Sudan III and IV, respectively.  相似文献   

12.
Decolorization of azo dyes by Rhodobacter sphaeroides   总被引:5,自引:0,他引:5  
Song ZY  Zhou JT  Wang J  Yan B  Du CH 《Biotechnology letters》2003,25(21):1815-1818
Rhodobacter sphaeroides AS1.1737 decolorized more than 90% of several azo dyes (200 mg dyes l–1) in 24 h. The optimal culture conditions were: anaerobic illumination (1990 lx), peptone as carbon source, temperature 35–40 °C and pH 7–8. Intracellular crude enzyme from this strain had azoreductase activity, optimized temperature as 45–50 °C, and decolorization kinetics which were consistent with a ping-pong mechanism.  相似文献   

13.
The gene encoding an FMN-dependent NADH azoreductase, AzrG, from thermophilic Geobacillus stearothermophilus was cloned and functionally expressed in recombinant Escherichia coli. Purified recombinant AzrG is a homodimer of 23 kDa and bore FMN as a flavin cofactor. The optimal temperature of AzrG was 85 °C for the degradation of Methyl Red (MR). AzrG remained active for 1 h at 65 °C and for 1 month at 30 °C, demonstrating both superior thermostability and long-term stability of the enzyme. AzrG efficiently decolorized MR, Ethyl Red at 30 °C. Furthermore, the enzyme exhibited a wide-range of degrading activity towards several tenacious azo dyes, such as Acid Red 88, Orange I, and Congo Red. These results suggested the sustainable utilization of G. stearothermophilus as an azo-degrading strain for AzrG carrying whole-cell wastewater treatments for azo pollutants under high temperature conditions.  相似文献   

14.
The fungal strain, Aspergillus niger SA1, isolated from textile wastewater sludge was screened for its decolorization ability for four different textile dyes. It was initially adapted to higher concentration of dyes (10–1,000 mg l−1) on solid culture medium after repeated sub-culturing. Maximum resistant level (mg l−1) sustained by fungal strain against four dyes was in order of; Acid red 151 (850) > Orange II (650) > Drimarene blue K2RL (550) > Sulfur black (500). The apparent dye removal for dyes was seen largely due to biosorption/bioadsorption into/onto the fungal biomass. Decolorization of Acid red 151, Orange II, Sulfur black and Drimarine blue K2RL was 68.64 and 66.72, 43.23 and 44.52, 21.74 and 28.18, 39.45 and 9.33% in two different liquid media under static condition, whereas, it was 67.26, 78.08, 45.83 and 13.74% with 1.40, 1.73, 5.16 and 1.87 mg l−1 of biomass production under shaking conditions respectively in 8 days. The residual amount (mg l−1) of the three products (α-naphthol, sulfanilic acid and aniline) kept quite low i.e., ≤2 in case AR 151 and Or II under shaking conditions. Results clearly elucidated the role of Aspergillus niger SA1 in decolorizing/degrading structurally different dyes into basic constituents.  相似文献   

15.
Eighteen fungal strains, known for their ability to degrade lignocellulosic material or lignin derivatives, were screened for their potential to decolorize commercially used reactive textile dyes. Three azo dyes, Reactive Orange 96, Reactive Violet 5 and Reactive Black 5, and two phthalocyanine dyes, Reactive Blue 15 and Reactive Blue 38, were chosen as representatives of commercially used reactive dyes. From the 18 tested fungal strains only Bjerkandera adusta, Trametes versicolor and Phanerochaete chrysosporium were able to decolorize all the dyes tested. During degradation of the nickel-phthalocyanine complex, Reactive Blue 38, by B. adusta and T. versicolor respectively, the toxicity of this dye to Vibrio fischeri was significantly reduced. In the case of Reactive Violet 5, a far-reaching detoxification was achieved by treatment with B. adusta. Reactive Blue 38 and Reactive Violet 5 were decolorized by crude exoenzyme preparations from T. versicolor and B. adusta in a H2O2-dependent reaction. Specific activities of the exoenzyme preparations with the dyes were determined and compared to oxidation rates by commercial horseradish peroxidase. Received: 3 February 1997 / Received revision: 9 April 1997 / Accepted: 13 April 1997  相似文献   

16.
Guo J  Zhou J  Wang D  Xiang X  Yu H  Tian C  Song Z 《Biodegradation》2006,17(4):341-346
Some experiments were conducted to study some electrochemical factors affecting the bacterial reduction (cleavage) of azo dyes, knowledge of which will be useful in the wastewater treatments of azo dyes. A common mixed culture was used as a test organism and the reductions of Acid Yellow 4, 11, 17 and Acid Yellow BIS were studied. It was found that the azo dyes were reduced at different rates, which could be correlated with the reduction potential of the azo compounds in cyclic voltammetric experiments. Acid Yellow BIS (E r − 616.75 mV) was reduced at the highest rate of 0.0284 mol g dry cell weight−1 h−1, Acid Yellow 11 (E r − 593.25 mV) at 0.0245 mol g dry cell weight−1 h−1 and Acid Yellow 4 (E r − 513 mV) at 0.0178 mol g dry cell weight−1 h−1. At the same time, the decolourization rate of Acid Yellow 17 (E r − 627.5 mV) was 0.0238 mol g dry cell weight−1 h−1, which was affected by the nature of chlorine substituent. Reduction of these azo dyes did not occur under aeration conditions. These studies with a common mixed culture indicate that the reduction of azo dyes may be influenced by the chemical nature of the azo compound. The reduction potential is a preliminary tool to predict the decolourization capacity of oxidative and reductive biocatalysts.  相似文献   

17.
Azo dyes are the major group of synthetic colourants used in industry and are serious environmental pollutants. In this study, Pseudomonas putida MET94 was selected from 48 bacterial strains on the basis of its superior ability to degrade a wide range of structurally diverse azo dyes. P. putida is a versatile microorganism with a well-recognised potential for biodegradation or bioremediation applications. P. putida MET94 removes, in 24 h and under anaerobic growing conditions, more than 80% of the majority of the structurally diverse azo dyes tested. Whole cell assays performed under anaerobic conditions revealed up to 90% decolourisation in dye wastewater bath models. The involvement of a FMN dependent NADPH: dye oxidoreductase in the decolourisation process was suggested by enzymatic measurements in cell crude extracts. The gene encoding a putative azoreductase was cloned from P. putida MET94 and expressed in Escherichia coli. The purified P. putida azoreductase is a 40 kDa homodimer with broad substrate specificity for azo dye reduction. The presence of dioxygen leads to the inhibition of the decolourisation activity in agreement with the results of cell cultures. The kinetic mechanism follows a ping-pong bi–bi reaction scheme and aromatic amine products were detected in stoichiometric amounts by high-performance liquid chromatography. Overall, the results indicate that P. putida MET94 is a promising candidate for bioengineering studies aimed at generating more effective dye-reducing strains.  相似文献   

18.
Sulfonated azo dyes were decolorized by two wild type photosynthetic bacterial (PSB) strains (Rhodobacter sphaeroides AS1.1737 and Rhodopseudomonas palustris AS1.2352) and a recombinant strain (Escherichia coli YB). The effects of environmental factors (dissolved oxygen, pH and temperature) on decolorization were investigated. All the strains could decolorize azo dye up to 900 mg l−1, and the correlations between the specific decolorization rate and dye concentration could be described by Michaelis–Menten kinetics. Repeated batch operations were performed to study the persistence and stability of bacterial decolorization. Mixed azo dyes were also decolorized by the two PSB strains. Azoreductase was overexpressed in E. coli YB; however, the two PSB strains were better decolorizers for sulfonated azo dyes.  相似文献   

19.
The effect of manganese and selected synthetic dyes on the production of manganese-dependent peroxidase (MnP) by Irpex lacteus immobilized on polyurethane foam was studied. In the cultures grown in a medium containing 65 μM Mn (II), up to three various isoenzymes of MnP were resolved by isolectrofocusing, with pI values within the range of 3.50–6.04. In the cultures grown in a medium containing 2.9 mM Mn (II), two new MnP isoforms (pI 3.28, 3.75) were produced. The addition of structurally different synthetic dyes, an azo dye Reactive Orange 16 (RO16), an anthraquinonic dye Remazol Brilliant Blue R (RBBR), and a triphenylmethane dye Bromophenol Blue (BPB), to the fungal cultures grown in the presence of high manganese inhibited the production of low pI MnP isoforms. However, in the presence of BPB a new MnP isoform with pI 5.67 was detected. BPB was found to induce MnP isoforms which are more effective in RBBR decolorization in vitro than the low pI isoforms present in the control cultures.  相似文献   

20.
Azo dyes represent a major class of synthetic colorants that are ubiquitous in foods and consumer products. Enterococcus faecalis is a predominant member of the human gastrointestinal microflora. Strain ATCC 19433 grew in the presence of azo dyes and metabolized them to colorless products. A gene encoding a putative FMN-dependent aerobic azoreductase that shares 34% identity with azoreductase (AcpD) of Escherichia coli has been identified in this strain. The gene in E. faecalis, designated as azoA, encoded a protein of 208 amino acids with a calculated isoelectric point of 4.8. AzoA was heterologously overexpressed in E. coli with a strong band of 23 kDa on SDS-PAGE. The purified recombinant enzyme was a homodimer with a molecular weight of 43 kDa, probably containing one molecule of FMN per dimer. AzoA required FMN and NADH, but not NADPH, as a preferred electron donor for its activity. The apparent Km values for both NADH and 2-[4-(dimethylamino)phenylazo]benzoic acid (Methyl red) substrates were 0.14 and 0.024 mM, respectively. The apparent Vmax was 86.2 microM/min/mg protein. The enzyme was not only able to decolorize Methyl red, but was also able to convert sulfonated azo dyes Orange II, Amaranth, Ponceau BS, and Ponceau S. AzoA is the first aerobic azoreductase to be identified and characterized from human intestinal gram-positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号