首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Posidonia oceanica is an endemic seagrass species in the Mediterranean Sea. In order to assess levels of genetic structure in this species, the microsatellite polymorphism was analysed from meadows collected in several localities, along the coasts of the Tyrrhenian Sea (Mediterranean Sea). The existence of single population units and the recruitment of seedlings collected in some localities were investigated. Moreover, genetic structure at different spatial scales and biogeographic relationships among populations were also assessed. Our analysis showed the existence of clear patterns of genetic structure in P. oceanica in the area considered in the analysis. P. oceanica, in fact, is present in separate meadows that represent discrete populations, characterized by low genetic diversity. Comparable levels of genetic variability between mature meadows and seedlings were found. Patterns of genetic relatedness among populations seem to be in accord with direction of dominant current flux in the whole area, separating South Tyrrhenian from North Tyrrhenian populations. Moderate levels of gene flow between populations and genetic substructure within populations, together with the finding of the limited role of sexual reproduction in increasing genetic variability, should be a cause for concern for the persistence of this essential resource in the Mediterranean basin.  相似文献   

2.
The seagrass Posidonia oceanica plays a multifunctional role in the coastal area as an important and productive component of ecosystems in the Mediterranean Sea. We detected by RAPD analysis with two arbitrary primers genetic differences in P. oceanica collected from several sites in the Southern Mediterranean. By AMOVA analysis we observed a level of about 20% genetic difference among individuals within a population and 80% among populations. A common band of 200 bp was found in all the amplified samples. Cloning and sequencing analysis of this band revealed the presence of a simple tandem repeat sequence (minisatellite) that we called PoTR (Posidonia oceanica tandem repeat). Finally, the ability of PoTR to detect genetic variability in P. oceanica genome was demonstrated by the presence of amplification products of different lengths utilizing primers internal to this sequence.  相似文献   

3.
The purpose of this study was to comparatively analyze the genetic diversity of sesame (Sesamum indicum L.) using agro-morphological and molecular markers. Twelve sesame populations collected from three regions in Cambodia and Vietnam were used in this study. A high genetic variation was revealed both by agro-morphological and RAPD markers within and among the 12 sesame populations. The range of agro-morphological trait based average taxonomic distance among populations (0.02 to 0.47) was wider than that of RAPD based genetic distance (0.06 to 0.27). The mean distance revealed by agro-morphological markers (0.23) and RAPD markers (0.22) was similar. RAPD based analysis revealed a relatively higher genetic diversity in populations from South Vietnam as compared to the other two regions. Interestingly, populations from this region also had higher values for yield related traits such as number of capsules per plant, number of seeds per capsule, and seed yield per plant suggesting positive correlation between the extent of genetic variation within population and yield related traits in sesame. A highly significant positive correlation (r = 0.88, P < 0.001) was found between agro-morphological and RAPD markers in estimating the genetic distance between populations. Both methods suggested the existence of a substantial amount of genetic diversity both in the Vietnamese and Cambodian populations. Although both agro-morphological and RAPD markers were found to be useful in genetic diversity analysis in sesame, their combined use would give superior results.  相似文献   

4.
Genetic diversity of three mud crab species, Scylla serrata (Forsk?l), S. oceanica (Dana), and S. tranquebarica (Fabricius), collected from two locations in eastern Thailand (Chanthaburi and Trat) was examined by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Ninety-one reproducible RAPD fragments, generated by UBC456, UBC457, and YNZ22, were polymorphic. The percentage of polymorphic bands within populations ranged from 47.92% to 77.59%. Species-specific RAPD markers were also observed and used to construct a molecular diagnostic key in these taxa. Large genetic differences between species were found (D(ij) = 0.425 to 0.751), whereas those between populations within each species were much lower (D(ij) = 0.171 to 0.199). The neighbor-joining tree based on genetic distances among pairs of individuals indicated three distinct groups, corresponding to S. serrata, S. oceanica, and S. tranquebarica. No genotypes were shared among these three species. This suggests the absence of genetic exchanges between sympatric mud crab species in eastern Thailand. Therefore, mud crabs in this area should be recognized as three different species rather than a single panmictic species exhibiting different morphs.  相似文献   

5.
Aim A central question in evolutionary ecology is the nature of environmental barriers that can limit gene flow and induce population genetic divergence, a first step towards speciation. Here we study the geographical barrier constituted by the transition zone between the Atlantic Ocean and the Mediterranean Sea, using as our model Cymodocea nodosa, a seagrass distributed throughout the Mediterranean and in the Atlantic, from central Portugal to Mauritania. We also test predictions about the genetic footprints of Pleistocene glaciations. Location The Atlantic–Mediterranean transition region and adjacent areas in the Atlantic (Mauritania to south‐west Portugal) and the Mediterranean. Methods We used eight microsatellite markers to compare 20 seagrass meadows in the Atlantic and 27 meadows in the Mediterranean, focusing on the transition between these basins. Results Populations from these two regions form coherent groups containing several unique, high‐frequency alleles for the Atlantic and for the Mediterranean, with some admixture west of the Almeria–Oran Front (Portugal, south‐west Spain and Morocco). These are populations where only one or a few genotypes were found, for all but Cadiz, but remarkably still show the footprint of a contact zone. This extremely low genotypic richness at the Atlantic northern edge contrasts with the high values (low clonality) at the Atlantic southern edge and in most of the Mediterranean. The most divergent populations are those at the higher temperature range limits: the southernmost Atlantic populations and the easternmost Mediterranean, both potential footprints of vicariance. Main conclusions A biogeographical transition region occurs close to the Almeria–Oran front. A secondary contact zone in Atlantic Iberia and Morocco results from two distinct dispersal sources: the Mediterranean and southernmost Atlantic populations, possibly during warmer interglacial or post‐glacial periods. The presence of high‐frequency diagnostic alleles in present‐day disjunct populations from the southernmost Atlantic region indicates that their separation from all remaining populations is ancient, and suggests an old, stable rear edge.  相似文献   

6.
Population genetic structures of the mackerel (Scomber scombrus) and chub mackerel (Scomber japonicus) were studied in the Mediterranean Sea. Fragments of 272 bp (S. scomber) and 387 bp (S. japonicus) of the 5'-end of the mitochondrial control region were sequenced from spawning individuals collected off the coasts of Greece, Italy, Spain, and Portugal. High levels of mitochondrial control region haplotypic diversity (> 0.98) were found for both Scomber species. Nucleotide diversity was higher in the mackerel (0.022) than in the chub mackerel (0.017). Global F(ST) values were also higher and significant in the mackerel (0.024, P < 0.0001) as opposed to the chub mackerel (0.003, P > 0.05). Molecular variance analyses showed differential genetic structuring for these two closely related species. There is extensive gene flow between Mediterranean Sea and Atlantic Ocean populations of chub mackerel, which are organized into a larger panmictic unit. In contrast, Mediterranean Sea populations of mackerel show some degree of genetic differentiation and are structured along an east-west axis. The analysed eastern Mediterranean Sea mackerel populations (Greece, Italy) are clearly separated from that of the western Mediterranean Sea (Barcelona), which forms a panmictic unit with eastern Atlantic Ocean populations. The genetic structures of both species showed asymmetric migration patterns and indicated population expansion.  相似文献   

7.
黄海和东海小黄鱼遗传多样性的RAPD分析   总被引:35,自引:0,他引:35  
小黄鱼(Pseudosciaena polyactis)是我国近海重要经济鱼类之一。本文分析了采自黄海和东海5个海区共计48个个体小黄鱼的随机扩增DNA多态性(RAPD)。从40个10 bp引物中选取20个用于群体遗传多样性分析,共检测出145个位点,其中132个(91.03%) 显多态性。用Shannon多样性指数量化的平均遗传多态度为1.93(1.50~2.44),群体内和群体间的遗传变异比例分别为69%和31%;群体间的平均遗传相似度和遗传距离分别为0.9139和0.0861。用非加权配对算数平均法(UPGMA)聚类分析的结果表明,所分析的5个群体可分为3个地理群系,从分子水平上支持了过去有关学者把黄海和东海的小黄鱼划分为北、中、南3个地理群系的观点。  相似文献   

8.
Sources and implications of genetic diversity in agamic complexes are still under debate. Population studies (amplified fragment length polymorphisms, microsatellites) and karyological methods (Feulgen DNA image densitometry and flow cytometry) were employed for characterization of genetic diversity and ploidy levels of 10 populations of Ranunculus carpaticola in central Slovakia. Whereas two diploid populations showed high levels of genetic diversity, as expected for sexual reproduction, eight populations are hexaploid and harbour lower degrees of genotypic variation, but maintain high levels of heterozygosity at many loci, as is typical for apomicts. Polyploid populations consist either of a single AFLP genotype or of one dominant and a few deviating genotypes. genotype/genodive and character incompatibility analyses suggest that genotypic variation within apomictic populations is caused by mutations, but in one population probably also by recombination. This local facultative sexuality may have a great impact on regional genotypic diversity. Two microsatellite loci discriminated genotypes separated by the accumulation of few mutations ('clone mates') within each AFLP clone. Genetic diversity is partitioned mainly among apomictic populations and is not geographically structured, which may be due to facultative sexuality and/or multiple colonizations of sites by different clones. Habitat differentiation and a tendency to inhabit artificial meadows is more pronounced in apomictic than in sexual populations. We hypothesize that maintenance of genetic diversity and superior colonizing abilities of apomicts in temporally and spatially heterogeneous environments are important for their distributional success.  相似文献   

9.
《Aquatic Botany》2005,82(3):210-221
To evaluate genetic differences of Posidonia oceanica (L.) Delile both at smaller (within a meadow) and larger scale (Mediterranean basin), plants of P. oceanica were analyzed by PCR technique and compared using random amplified polymorphic DNA (RAPD) markers. Results were associated to known differences in phenology. At the small-scale level, P. oceanica shoots collected in the bay of Monterosso al Mare (Liguria, NW Mediterranean Sea) showed genetic differences among sampling stations, with a decrease in genetic diversity along an anthropogenic disturbance gradient. At basin level, genetic differences were detected among 11 P. oceanica shoots coming from different regions of the Mediterranean, and transplanted to the Port-Cros National Park (France) between 1989 and 1991: Izmir, Turkey; Athens, Greece; Taranto, Italy; Ischia Island, Italy; Lavezzi, France; Port-Cros, France; Banyuls, France; Palma de Majorca, Balearic Islands, Spain; Marsa Bay, Algiers. By cluster analysis two major Mediterranean groups were distinguished, the Eastern Mediterranean Group (EMG) and the Western Mediterranean Group (WMG). This suggests that eastern and western populations of P. oceanica have diverged during the colonization of the Mediterranean (after near extinction of the Mediterranean biota in the Messinian period, approximately 5.6 million years ago), and have experienced little gene flow between them. Cluster analysis also indicated that previously described phenological differences among P. oceanica populations in different sectors of the Mediterranean are not mere phenotypic responses to different climatic and hydrological conditions but may well have a genetic basis.  相似文献   

10.
Seagrass ecosystems have suffered significant declines globally and focus is shifting to restoration efforts. A key component to successful restoration is an understanding of the genetic factors potentially influencing restoration success. This includes understanding levels of connectivity between restoration locations and neighboring seagrass populations that promote natural recovery (source and sink populations), the identification of potential donor populations, and assessment of genetic diversity of restored meadows and material used for restoration. In this study, we carry out genetic surveys of 352 individuals from 13 populations using 11 polymorphic microsatellite loci to inform seagrass restoration activities by: (1) understanding levels of genetic and genotypic diversity within meadows; and (2) understanding genetic structure and patterns of connectivity among these meadows to determine which source sites may be most appropriate to assist recovery of three restoration sites. The study identified high genotypic diversity within the locations analyzed from the Port of Gladstone and Rodd's Bay region, indicating sexual reproduction is important in maintaining populations. Overall, we detected significant genetic structuring among sites with the Bayesian structure analysis identifying genetic clusters that largely conformed to a northern, central, and southern region. This suggests limited gene flow between regions, although there does appear to be some connectivity within regions. The hydrodynamic models showed that seeds were largely locally retained, while fragments were more widely dispersed. Limited gene flow between regions suggests donor material for restoration should be sourced locally where possible.  相似文献   

11.
Random amplified polymorphic DNA (RAPD) was used to assess the genetic structure of Hemileia vastatrix populations. Forty-five rust isolates with different virulence spectra and from different hosts and geographical regions were analyzed. Out of 45 bands, generated with three RAPD primers, 35 (78%) were polymorphic and scored as molecular markers. Cluster analysis exhibits unstructured variability of this pathogen with regard to physiological race, geographical origin or host. The genotypic diversity (H') inferred from Shannon's index was higher than gene diversity (Ht), suggesting that diversity is distributed among clonal lineages. Estimates of gene diversity in Africa and Asia populations were higher in total (Ht) as compared to within population diversity (Hs). Genetic differentiation was considerable among coffee rust isolates from Africa (Gst = 0.865) and Asia (Gst = 0.768) but not among isolates from South America (Gst = 0.266). We concluded that genetic diversity in H. vastatrix was moderately low and that the genetic differentiation among populations shows that asexual reproduction is likely to play an important role in the population biology of this fungus. This should be taken into account for the development of breeding programs.  相似文献   

12.
New records of marine Tardigrada in the Mediterranean Sea   总被引:1,自引:0,他引:1  
Meiofauna from Chafarinas archipelago (western Mediterranean, N. Africa) were studied, and marine Tardigrada were identified to species level. A total of 15 species, belonging to families Stygarctidae, Halechiniscidac (Subfamilies Halechiniscinae, Florarctinae, Styraconyxinae and Tanarctinae), Batillipedidae, and Echiniscoididae, were found for the first time from the Alboran Sea and southwestern Mediterranean area. Four species and one subspecies are new records for the Mediterranean Sea: I'ioractus acer, F. asper, P. stellatus, Actinarctus doryphorus and Echiniscoides sigismundi hispaniensis. The male of Floractus stellatus , previously unknown to science, is described. Many species have been recorded for the first time in different sedimentary environments, such as midlittoral pools, very shallow gravels, pools in a mixed rocky environment or between Posidonia oceanica meadows, 'Amphioxus' gravels, and coastal detritic.  相似文献   

13.
Thirteen allozyme loci and 68 random amplified polymorphic DNA (RAPD) markers were analyzed to assess the genetic diversity and population structure of threatened Antirrhinum microphyllum (Scrophulariaceae), a narrow endemic of central Spain known from only four populations. According to allozyme data, species genetic diversity (p = 46.15%, A = 2.61, and H(e) = 0.218), as well as within-population genetic diversity (p = 44.23%, A = 2.10, and H(e) = 0.204), were high when compared to average estimates for other narrowly distributed plant species. Ninety-four percent of species genetic diversity corresponded to within-population genetic diversity. Nevertheless, significant differences were found among populations in allele frequencies of four of the six polymorphic loci, and three private alleles were detected. Inbreeding coefficients (F(IS)) suggest that populations are structured in genetic neighborhoods. The RAPDs also showed high levels of genetic diversity (p = 89.71% and H(e) = 0.188 at the species level, and p = 67.65% and H(e) = 0.171 at the population level). Nei's genetic distances estimated both from allozymes and RAPDs indicated low differentiation among populations. In spite of this, the low frequencies of certain alleles and the presence of private alleles indicate that efforts should be made to conserve all four remaining populations.  相似文献   

14.
The causal agent of common bean anthracnose, Colletotrichum lindemuthianum, has considerable genetic and pathogenic variability, which makes the development of resistant cultivars difficult. We examined variability within and between Brazilian pathotypes of C. lindemuthianum through the identification of vegetative compatibility groups (VCGs) and by RAPD analysis. Two hundred and ninety-five nit mutants were obtained from 47 isolates of various pathotypes of the fungus collected from different regions, host cultivars and years. In complementation tests, 45 VCGs were identified. Eighteen RAPD primers were employed in the molecular analyses, producing 111 polymorphic bands. Estimates of genetic similarities, determined from the Sorence-Dice coefficient, ranged from 0.42 to 0.97; the dendrogram obtained by cluster analysis revealed 18 groups of isolates. RAPD and VCG markers presented high genotypic diversity. The number of significant associations (P=0.05) between RAPD, VCG and pathogenicity markers ranged from 0 (VCG) to 80% (pathogenicity). The test of multilocus association (rd) for RAPD markers was significantly different from zero (P<0.001), suggesting linkage disequilibrium. However, the results for VCG markers show the presence of recombination mechanisms. In conclusion, RAPD markers and VCGs were useful for detecting genetic variability among isolates of C. lindemuthianum. We found considerable diversity among isolates from the same geographic origin within a short interval; this suggests rapid evolution. There is a need for further studies to elucidate the population structure of this pathogen in agro-ecosystems.  相似文献   

15.
Genetic and morphological structure of tub gurnard Chelidonichthys lucerna populations in Turkish marine waters were investigated with mtDNA sequencing of 16S rRNA and morphological characters. C. lucerna samples were collected from the Black Sea, Marmara, Aegean and northeastern Mediterranean coasts of Turkey. The lowest genetic diversity was found in the northeastern Mediterranean (Iskenderun Bay) population, while the highest was in the Marmara population with overall average value of genetic diversity within populations. A total of 14 haplotypes was found, and the highest haplotype diversity was in the Black Sea whereas the lowest was in the northeastern Mediterranean population (Iskenderun Bay). The Black Sea and Iskenderun Bay populations showed the least genetic divergence (0.001081), while the highest was between the Marmara Sea and northeastern Mediterranean (Antalya Bay) populations (0.002067). Pairwise comparisons of genetic distance revealed statistically significant differences (P < 0.05) between the Marmara and both the Aegean and northeastern Mediterranean (Antalya Bay) samples. Neighbour joining tree analyses clustered the northeastern Mediterranean populations (Antalya Bay and Iskenderun Bay) as genetically more interrelated populations, whereas the Aegean Sea population was clustered as most isolated one. Discriminant function analysis of morphological characters showed that only the Black Sea population is differentiated from the other populations.  相似文献   

16.
Plathymenia reticulata is a tropical tree native to the Brazilian Cerrado, one of the most important and endangered ecosystems in Brazil. This species presents high-quality wood and potential for recovery of degraded areas. Despite its importance, almost nothing is known about its genetic or ecological features. Random amplified polymorphic DNA (RAPD) markers were used to investigate the genetic diversity and structure of six natural populations of P. reticulata. DNAs from 117 adult individuals were amplified with 10 random primers and Shannon's index and amova were used to evaluate the levels of genetic diversity within and among populations. Through 72 markers, 70.8% of which were polymorphic, it was possible to obtain 117 unique RAPD phenotypes. The levels of genetic variability found in the six populations of P. reticulata were considerable and most of the genetic variation was found between individuals within populations, although pairwise PH(ST) values indicated significant divergence between populations. The among-population component accounted for, respectively, 12.3% and 16% of the genetic variation, according to amova and Shannon's index. These results were compared with other genetic studies on plant species and such a level of differentiation among populations corresponds to that which has usually been observed for outcrossing plants. The importance of maintenance of the P. reticulata populations and implications of the analysis of adult individuals, considering the longevity of this species and the relatively recent Cerrado fragmentation, are discussed.  相似文献   

17.
Permanent pastures and meadows are species-rich vegetation systems that play an important role in the ecology and agriculture of temperate climates. Intensive management reduces species diversity and may also influence the genetic diversity within individual species and populations. The objective of this study was to assess genetic variability of meadow fescue, an important component of species-rich grasslands, and to determine whether fertilization and defoliation frequency influence genetic variability within natural populations. Genetic diversity of six natural populations and three cultivars of Festuca pratensis was investigated using randomly amplified polymorphic DNA (RAPD) markers and agronomic traits. Samples of natural populations were taken from two unrelated long-term experiments, where treatments had been applied for 11–38 years. RAPD analysis detected a clear genetic distinction of the cultivars from the natural populations. Genetic variability within cultivars was lower than within natural populations. Analysis of molecular variance ( AMOVA ) showed a significant effect of management on genetic variability. Fertilization and frequent defoliation led to a reduction in genetic variability within natural populations. Analysis of agronomic traits was only partially congruent with the results of RAPD analysis. This study shows that significant genetic variability exists within cultivars and natural populations of Festuca pratensis and can be reduced by intensive management.  相似文献   

18.
Rhododendron aureum Georgi (Ericaceae) is a perennial alpine shrub endemic to Changbai Mountain in China. We used ISSR and RAPD markers to describe the diversity and genetic structure within and among four natural populations located at different altitudes. DNA from 66 individuals was amplified with ten ISSR markers and seven RAPD markers. High genetic diversity was observed by these two techniques at the species level. The genetic diversity of populations increased with altitudinal gradients from low to high. The coefficient of gene differentiation (GST 0.3652 in ISSR and 0.2511 in RAPD) and AMOVA analysis revealed that most genetic diversity was distributed within populations (61.96% in ISSR and 70.23% in RAPD). The estimate of gene flow based on GST was 0.8690 in ISSR and 1.4910 in RAPD. The UPGMA clustering results using ISSR and RAPD showed that all individuals from the same altitude were gathered together, and the two populations (TYD2a and YHLa) from middle altitudes always clustered together. Compared with populations from different altitudes, similar genetic diversity and low genetic differentiation were obtained from populations at the same altitudes, as revealed by ISSR markers. In addition to the reproductive strategy of R. aureum, these data highlight that local environmental conditions may play an important role in shaping the diversity and genetic structure of this species.  相似文献   

19.
20.
Randomly amplified polymorphic DNA (RAPD) variation in populations of the koala, Phascolarctos cinereus, was investigated, revealing significant differences in the level of diversity between southern and northern regions of eastern Australia. Of the 20 polymorphic RAPD markers identified in koalas, 4-7 were polymorphic in southern populations, while 12-17 were polymorphic in northern populations. Analysis of molecular variance revealed a significant difference in the estimated variance between koalas from northern and those from southern regions (P < 0.001), where populations from the north were greater than twice as variable as their southern cousins. The total genetic diversity observed was attributed to regional differences (30.91%), population differences within a region (11.77%), and differences among individuals within a population (57.32%). For the within-region analyses, a large proportion of the genetic diversity was attributable to individual differences within a population, 80.34% for the north and 91.23% for the south. These results demonstrate that RAPD markers are useful for determining population structure among koalas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号