首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
The G-electrode-loading method (GELM) is a technique enabling a large number of proteins from rat liver to enter an immobilized pH gradient (IPG) gel strip for isoelectric focusing (IEF). In this method, three slips containing the sample solution are placed on the cathodic edge of an IPG gel strip and a slip containing Chaps solution, a filtration membrane, and an electrode slip are placed on top. Finally, a G-electrode is placed on these slips. The Chaps solution (an amphoteric compound) is supplied gently to the sample solution during IEF and helps the proteins in the sample solution to enter the IPG gel strips with a high solubilization capacity. This method was compared with traditional slip-loading and in-gel rehydration, and it showed the best results for protein separation, including high-molecular-mass proteins.  相似文献   

2.
Hydrophobic proteins are difficult to analyze by two-dimensional electrophoresis (2-DE) because of their intrinsic tendency to self-aggregate during the first dimension (isoelectric focusing, IEF) or the equilibration steps. This aggregation renders their redissolution for the second dimension uncertain and results in the reduction of the number and intensity of protein spots, and in undesirable vertical and horizontal streaks across gels. Trifluoroethanol (TFE) is traditionally used at high concentration to solubilize peptides and proteins for NMR studies. Depending upon its concentration, TFE strongly affects the three-dimensional structure of proteins. We report here a phase separation system based on TFE/CHCl(3), which is able to extract a number of intrinsic membrane proteins. The addition of TFE in the in-gel sample rehydration buffer to improve membrane protein IEF separation is also presented. The procedure using urea, thiourea, and sulfobetaine as chaotropic agents was modified by the addition of TFE and removing of sulfobetaine at an optimized concentration in the solubilization medium used for the first dimension. When using membrane fractions isolated from Escherichia coli, the intensity and the number of spots detected from 2-DE gels that used TFE in the solubilization medium were significantly increased. The majority of the proteins identified using peptide mass fingerprinting and tandem mass spectrometry (MS/MS) were intrinsic membrane proteins, proteins of beta barrel structure or transmembrane proteins.  相似文献   

3.
McDonough J  Marbán E 《Proteomics》2005,5(11):2892-2895
Many proteins with extreme physical properties, including basic and acidic proteins, membrane proteins, and very large proteins, present specific challenges to 2-DE separation. Using a pressure-blotting approach, we demonstrate that a basic integral membrane protein, mitochondrial ATP-binding cassette protein 1 (mABC1), focuses in the IPG strip, but fails to enter into the 2-D SDS-PAGE gel. Through modifying the equilibration conditions between the IPG strip and 2nd dimension, we demonstrate that only by increasing both the volume (from 3 to 6 mL for a 7-cm strip) and SDS concentration (from 2 to 10%) of the equilibration buffer is migration of mABC1 into the 2nd dimension achieved. While 2-DE remains one of the core separation technologies of proteomic analysis, proteins that are extremely basic, hydrophobic, or of large mass present significant challenges to 2-DE separation due to aggregation, oxidation, precipitation, and the physical limitations of the 1-D IPG strip. Since the advent of commercially available IPG strips, numerous groups have experimented with IEF conditions using various detergents alone or in combination, alternative denaturants, and thiol oxidation agents to improve protein focusing. Effective 2-DE separation of membrane proteins has been affected dramatically by these advances in protein solubilization, as well as improvements in isolation of membranes, delipidation, and active in-gel rehydration. Since the development of commercially available basic IPG strips, the most significant advance in the separation of basic proteins has been the introduction of hydroxyethyldisulfides, either alone or in combination with DTT. While hydrophobic proteins were once virtually absent from the 2-D gel, and basic proteins were only visible as dense streaks, now many groups are undertaking large-scale analyses of membranes and basic proteins. Using this base of experimental tools, we embarked on a proteomic analysis of cardiac mitochondrial membranes, hoping to combine the knowledge gained from ongoing targeted protein chemistry and molecular biology studies with a broader-based proteomic analysis. Of particular interest is the inner mitochondrial membrane protein mABC1 (mitochondrial ATP-binding cassette protein 1), which may play a significant role in cardioprotection as part of the mitochondrial ATP-sensitive potassium channels. Therefore, in designing our 2-DE approach, it was crucial to ensure that mABC1 is focused, observable, and quantifiable, despite being an integral membrane protein of pI 9.37.  相似文献   

4.
Immobilized pH gradients isoelectric focusing (IPG-IEF) is the first dimension typically used in two-dimensional gel electrophoresis (2-DE). It can also be used on its own in conjunction with tandem mass spectrometry (MS/MS) for the analysis of proteins. Here, we described a strategy combining isoelectric focusing in immobilized pH gradient strips, and mass spectrometry to create a new high-throughput and sensitive detection method. Protein mixture is separated by in-gel IEF, then the entire strip is cut into a set of gel sections. Proteins in each gel section are digested with trypsin, and the resulted peptides are subjected to reversed-phase high performance liquid chromatography followed by electrospray-linear ion-trap tandem mass analysis. Using this optimized strategy, we have identified 744 distinct human proteins from an IPG strip loaded only 300 microg of plasma proteins. When compared with other works in published literatures, this study offered a more convenient and sensitive method from gel to mass spectrometry for the separation and identification proteins of complex biological samples.  相似文献   

5.
Little is known about what happens to transmembrane proteins (TMP) in 2-DE. In order to obtain more insight into the whereabouts of these proteins we prepared membrane-enriched synaptosomes from rat frontal cortex and washed them with 7 M urea or Na(2)CO(3). From each preparation, 200 microg protein was loaded on 2-DE gels covering the 4-7 and 6-11 pH ranges, respectively. MALDI-MS/MS analysis detected only 3 TMP among 421 identified spots. However, when the samples had been washed with Na(2)CO(3), only few well-focused spots remained detectable on the gel covering the pH 6-11 range. Instead, a heavily ruthenium-stained smear became visible at the upper edge of the gel at the location where the samples had been applied by cup loading. LC-MS/MS analysis revealed that this smear contained 38 unfocused TMP with up to 12 transmembrane helices. After transfer to the second dimension, no major areas of protein staining were left on the IPG strips. This indicates that after extraction and denaturation the TMP may form high-molecular aggregates, due to their "hydrophobic interactions". These aggregates enter the IPG strips, but do not focus regularly. They are then transferred onto the 2-DE-gels, where they remain caught at the upper edge.  相似文献   

6.
7.
The conventional approach for analyzing the protein complement of a genome involves the combination of two-dimensional gel electrophoresis (2-DE) and mass spectrometric based protein identification technologies. While 2-DE is a powerful separation technique, it is severely limited by the insolubility of certain classes of proteins (e.g. hydrophobic membrane proteins), as well as the amount of protein that can be processed. Here, we describe a simple procedure for resolving complex mixtures of proteins that involves a combination of free flow electrophoresis (FFE), a liquid-based isoelectric focussing (IEF) method, and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Resolved proteins were identified by peptide fragment sequencing using capillary column reversed-phase high performance liquid chromatography (RP-HPLC)/mass spectrometry (MS). An initial demonstration of the method was performed using digitonin/ethylenediaminetetraacetic acid EDTA extracted cytosolic proteins from the human colon carcinoma cell line, LIM 1215. Cytosolic proteins were separated by liquid-based IEF (pH range 3-10) into 96 fractions, and each FFE fraction was further fractionated by SDS-PAGE. Selected protein bands were excised from the SDS-PAGE gel, digested in situ with trypsin, and subsequently identified by on-line RP-HPLC/electrospray-ionization ion trap MS. Our results indicate that FFE is: (i) an extremely powerful liquid-based IEF method for resolving proteins; (ii) not limited by the amount of sample that can be loaded onto the instrument; and (iii) capable of fractionating intact protein complexes (a potentially powerful tool for cell-mapping proteomics). An up-to-date list of cytosolic proteins from the human colorectal carcinoma cell line LIM 1215 can be found in the Joint Protein Structure Laboratory (JPSL) proteome database. This information will provide an invaluable resource for future proteomics-based biological studies of colon cancer. The JPSL proteome database can be accessed through the World Wide Web (WWW) network (http://www.ludwig.edu.au/jpsl/jpslhome.html).  相似文献   

8.
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is the common method of choice for proteomic analysis. By introducing several small changes, a method was developed that not only improved the resolution and reproducibility of 2D-PAGE but also shortened the time of analysis. Precipitation by alkaline phenol and methanol/ammonium acetate was the choice for protein extraction. However, instead of precipitating the proteins overnight at -20 °C, it was carried out for 2 to 3 h at -80 °C. Ethanol was used for the final wash of the protein precipitate instead of routinely used acetone. Dithiothreitol (DTT) was used in all solutions from the beginning, considerably improving the solubilization of precipitated proteins. Solubilization was further improved by using a mixture of detergents and denaturants at high concentrations along with large amounts of DTT. Both in-gel rehydration and cup-loading methods were used for isoelectric focusing (IEF). For in-gel rehydration, samples reduced with DTT were diluted with sample buffer containing 2-hydroxyethyl disulfide (2-HED) (1:3) or were cup-loaded on a strip rehydrated with sample buffer containing 2-HED. Glycerol (5%) was used in the sample buffer, and the focusing was performed at 15 °C. The applicability of the method was demonstrated using several soybean tissues.  相似文献   

9.
To contribute to physiology and pathophysiology of the glomerulus of human kidney, we have launched a proteomic study of human glomerulus, and compiled a profile of proteins expressed in the glomerulus of normal human kidney by two-dimensional gel electrophoresis (2-DE) and identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kidney cortices with normal appearance were obtained from patients under surgical nephrectomy due to renal tumor, and glomeruli were highly purified by a standard sieving method followed by picking-up under a phase-contrast microscope. The glomerular proteins were separated by 2-DE with 24 cm immobilized pH gradient strips in the 3-10 range in the first dimension and 26 x 20 cm sodium dodecyl sulfate polyacrylamide electrophoresis gels of 12.5% in the second dimension. Gels were silver-stained, and valid spots were processed for identification through an integrated robotic system that consisted of a spot picker, an in-gel digester, and a MALDI-TOF MS and / or a LC-MS/MS. From 2-DE gel images of glomeruli of four subjects with no apparent pathologic manifestations, a synthetic gel image of normal glomerular proteins was created. The synthetic gel image contained 1713 valid spots, of which 1559 spots were commonly observed in the respective 2-DE gels. Among the 1559 spots, 347 protein spots, representing 212 proteins, have so far been identified, and used for the construction of an extensible markup language (XML)-based database. The database is deposited on a web site (http://www.sw.nec.co.jp/bio/rd/hgldb/index.html) in a form accessible to researchers to contribute to proteomic studies of human glomerulus in health and disease.  相似文献   

10.
Two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension, initially applied for the separation of soluble and total cellular proteins, has been extended to the analysis of membrane proteins. We show that the usual procedures lead to artifacts and irreproducible results due to aggregation and precipitation of proteins and protein-phospholipid complexes during isoelectric focusing (first dimension) and sodium dodecyl sulfate (SDS) gel electrophoresis (second dimension). Optimized solubilization procedures for hydrophobic membrane proteins are presented and the use of dilute samples is shown to be essential to overcome the major problems in isoelectric focusing. Increased volumes of samples dissolved in rehydration buffer are applied by direct rehydration of dry immobilized pH gradient (IPG) gels. Isoelectric focusing in 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) without urea gives good results as does 2% Nonidet-P40 with 8 M urea. Heat denaturation should be avoided. An optimized equilibration procedure for IPG gel strips in SDS sample buffer prior to separation in the second dimension was developed that minimizes loss of proteins and results in high-resolution two-dimensional electropherographic maps with a minimum of streaking. The gel strips are partially dehydrated at 40 degrees C and shortly reswollen in situ on the SDS slab gel in SDS-sample buffer containing agarose.  相似文献   

11.
Direct 2-DE analysis of cartilage is difficult due to the high proteoglycan content. Proteoglycan removal before IEF may however cause the partial or total loss of specific proteins making this approach ineffective when quantitative data are required to investigate protein expression differences. Thus, we have developed a 2-DE method including passive rehydration loading that does not require sample pretreatment and allows direct protein expression studies in cartilage samples.  相似文献   

12.
A proteomic analysis of the synaptic vesicle was undertaken to obtain a better understanding of vesicle regulation. Synaptic vesicles primarily consist of integral membrane proteins that are not well resolved on traditional isoelectric focusing/two-dimensional gel electrophoresis (IEF/2-DE) gels and are resistant to in-gel digestion with trypsin thereby reducing the number of peptides available for mass spectrometric analysis. To address these limitations, two complementary 2-DE methods were investigated in the proteome analysis: (a) IEF/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (IEF/SDS-PAGE) for resolution of soluble proteins and, (b) Benzyl hexadecyl ammonium chloride/SDS-PAGE (16-BAC/SDS-PAGE) for resolution of integral membrane proteins. The IEF/SDS-PAGE method provided superior resolution of soluble proteins, but could only resolve membrane proteins with a single transmembrane domain. The 16-BAC/SDS-PAGE method improved separation, resolution and identification of integral membrane proteins with up to 12 transmembrane domains. Trypsin digestion of the integral membrane proteins was poor and fewer peptides were identified from these proteins. Analysis of both the peptide mass fingerprint and the tandem mass spectra using electrospray ionization quadrupole-time of flight mass spectrometry led to the positive identification of integral membrane proteins. Using both 2-DE separation methods, a total of 36 proteins were identified including seven integral membrane proteins, 17 vesicle regulatory proteins and four proteins whose function in vesicles is not yet known.  相似文献   

13.
With the aim of studying differentially expressed proteins as a function of abiotic and biotic stress in citrus plants, we optimized a protocol for the extraction of total leaf proteins and their 2-DE separation using commercially available immobilized pH gradient strips (IPGs) in the first dimension. Critical factors for good reproducibility of citrus leaf protein separation were identified: trichloroacetic acid (TCA)/acetone precipitation after extraction in lysis buffer, sample fractionation on narrow range overlapping IPGs and sample-cup loading at the anodic or cathodic end of the strip. The use of thiourea and a strong detergent (C7BzO) in the solubilization/rehydration buffer, coupled with the increase to 10% of SDS in the equilibration buffer before the second dimension seemed to affect positively the resolution of basic proteins. Using our protocol we resolved about 30 basic proteins on 6.3-8.3 pH range strips. Further, our protocol was successfully applied reproducibly on the analysis of control and salt exposed leaf samples of Citrus reshni Hort. Ex Tan.  相似文献   

14.
Specific proteins in small amounts of human plasma were subtracted from patterns of non-denaturing two-dimensional electrophoresis (non-denaturing 2-DE) by layering a 7 microl aliquot of Protein A agarose-antibody complex on the top of an isoelectric focusing (IEF) gel before the loading of a plasma sample. The Protein A agarose suspension was recovered after non-denaturing IEF and was mixed with 8 M urea-5% 2-mercaptoethanol-1% NP-40 to extract the antibody and the specific plasma protein from Protein A agarose. The extract was then subjected to denaturing two-dimensional electrophoresis (denaturing 2-DE) and the location of the specific polypeptide was determined. The technique can be applied to the extraction and analysis of proteins in small amounts of samples.  相似文献   

15.
Görg A  Boguth G  Köpf A  Reil G  Parlar H  Weiss W 《Proteomics》2002,2(12):1652-1657
Due to their heterogeneity and huge differences in abundance, the detection and identification of all proteins expressed in eukaryotic cells and tissues is a major challenge in proteome analysis. Currently the most promising approaches are sample prefractionation procedures prior to narrow pH range two-dimensional gel electrophoresis (IPG-Dalt) to reduce the complexity of the sample and to enrich for low abundance proteins. We recently developed a simple, cheap and rapid sample prefractionation procedure based on flat-bed isoelectric focusing (IEF) in granulated gels. Complex sample mixtures are prefractionated in Sephadex gels containing urea, zwitterionic detergents, dithiothreitol and carrier ampholytes. After IEF, up to ten gel fractions alongside the pH gradient are removed with a spatula and directly applied onto the surface of the corresponding narrow pH range immobilized pH gradient (IPG) strips as first dimension of two-dimensional (2-D) gel electrophoresis. The major advantages of this technology are the highly efficient electrophoretic transfer of the prefractionated proteins from the Sephadex IEF fraction into the IPG strip without any sample dilution, and the full compatibility with subsequent IPG-IEF, since the prefactionated samples are not eluted, concentrated or desalted, nor does the amount of the carrier ampholytes in the Sephadex fraction interfere with subsequent IPG-IEF. Prefractionation allows loading of higher protein amounts within the separation range applied to 2-D gels and facilitates the detection of less abundant proteins. Also, this system is highly flexibile, since it allows small scale and large scale runs, and separation of different samples at the same time. In the current study, this technology has been successfully applied for prefractionation of mouse liver proteins prior to narrow pH range IPG-Dalt.  相似文献   

16.
The protein analysis of structural tissues is typically highly problematic. Amniotic membrane displays unique wound healing and anti-scarring properties; however, little is known concerning its active protein content. The structural nature of amniotic membrane necessitated development and extensive optimisation of the entire two-dimensional (2-D) workflow. Proteins were extracted using powerful solubilisation buffers and analysis carried out using 2-D electrophoresis followed by mass spectrometry (MS) identification. Preservation and processing resulted in prefractionation of soluble from structural and membrane-associated proteins. Enhanced protein solubility was achieved by cysteine blocking using both N,N-dimethylacrylamide (DMA) alkylation and bis(2-hydroxyethyl) disulphide (HED); an alternative procedure for the effective application of HED is demonstrated. The benefits of precipitation and cup-loading versus in-gel rehydration were also assessed, with procedures for the employment of HED with the latter described. Following optimisation, a representative sample 21 proteins were identified from amniotic membrane using MS verify procedures were MS-compatible. Our results demonstrate that techniques for the reproducible separation of proteins from a proteinaceous structural tissue have been optimised. Briefly, proteins are extracted using a thiourea/urea extraction buffer containing carrier ampholytes, dithiothreitol (DTT), and 3-(cyclohexylamino)-1-propanesulfonic acid (CHAPS). After DMA alkylation, proteins were precipitated (using the 2-D clean-up kit from Amersham Biosciences) and resolubilised in extraction buffer containing a lower concentration of DTT. Samples were either cup-loaded onto rehydrated HED-containing strips or rebuffered into HED-containing buffer followed by in-gel rehydration.  相似文献   

17.
When the p-value is set at <0.05 in statistical group comparisons, a 5% rate of "false significant" results is expected. In order to test the reliability of our 2-DE method, we loaded each of 24 gels with equal-sized samples (200 mug protein from pooled rat brain, pH 4-7, stained with ruthenium fluorescent stain for visualization) and statistically compared the first 12 gels with the last 12. In numerous experiments the rate of significant differences found far exceeded 5%. Several factors were identified as causing the following rates of false significant differences in spot intensities: (i) running samples in two different 2-DE runs (42%), (ii) running second dimension gels produced in two different gel casters (16%), (iii) normalizing the entire gel instead of separately normalizing several different gel zones (11%), (iv) using IPG strips from different packages (19%), (v) dividing the whole sample into subgroups during software analysis (9%). After controlling for all these factors, the rates of "false positive" results in our experiments were regularly reduced to approximately 5%. This is an indispensable prerequisite for avoiding too high a rate of false positive results in experiments in which different subgroups are compared statistically.  相似文献   

18.
A protocol was established for two-dimensional gel electrophoresis (2-DE) of barley seed and malt proteins in the pH range of 6-11. Proteins extracted from flour in a low-salt buffer were focused after cup-loading onto IPG strips. Successful separation in the second dimension was achieved using gradient gels in a horizontal SDS-PAGE system. Silver staining of gels visualized around 380 (seed) and 500 (malt) spots. Thirty-seven different proteins from seeds were identified in 60 spots, among these 46 were visualized also in the malt 2-D pattern. Proteins were identified by peptide mass fingerprinting and by tandem MS sequencing after in-gel digestion by trypsin. In addition, the N-terminal sequence of 10 different proteins from 11 spots was determined after electroblotting to a polyvinylidene difluoride (PVDF) membrane. Five identified proteins (in 9 spots) are involved in glycolysis, 12 in defence against pathogens (21 spots), 4 in storage, folding, and synthesis of proteins, and in nitrogen metabolism (5 spots), 6 in carbohydrate metabolism (11 spots), and 4 in stress and detoxification (9 spots). Six proteins (7 spots) were not grouped in these categories, and 3 were not ascribed a function. The presented 2-D patterns and identifications will be used to describe proteome differences between cultivars and changes during malting.  相似文献   

19.
A problem in proteomic analysis of lung cancer tissue is the presence of complex components of different histological backgrounds (squamous cell carcinoma, small cell lung carcinoma, and adenocarcinoma). The efficient solubilization of protein components before two-dimensional electrophoresis (2-DE) is a very critical. Poor solubilization has been associated with a failure to detect proteins and diffuse, streaked and/or trailing protein spots. Here, we have optimized the solubilization of human lung cancer tissue to increase protein resolution. Isoelectric focusing (IEF) rehydration buffer containing a thiourea–urea mixture provided superior resolution, whereas a buffer without thiourea yielded consistently poor results. In addition, IEF rehydration buffers containing CHAPS and DTT gave superior resolution, whereas buffers containing Nonidet P-40 (NP-40) and/or Triton X-100 did not. A tributylphosphine-containing buffer gave consistently poor results. Using optimized conditions, we used 2-D gel analysis of human lung cancer tissue to identify 11 differentially-expressed protein spots by MALDI-mass spectrometry. This study provides a methodological tool to study the complex mammalian proteomes.  相似文献   

20.
Grass pea (Lathyrus sativus L.) is the most drought-tolerant legume crop rich in dietary protein. However, little is known about the molecular mechanisms of its drought resistance. Two-dimensional gel electrophoresis (2-DE) is an important experiment technique in proteomics, which has been applied extensively in studies on plant resistance to abiotic stress. To establish an effective 2-DE platform and further study the drought-resistance mechanisms of grass pea using proteomic approaches, three protein extraction methods, different isoelectric focusing (IEF) conditions and various types of gel strips were evaluated using mature leaves. The results showed that the trichloroacetic acid (TCA)/acetone protein extraction method, extending time at low voltage for IEF and using 18 cm gel strip with pH 4.0–7.0 were optimum conditions for 2-DE analysis of grass pea leaves. Applying these optimized 2-DE conditions, 1,481 total protein spots were detected in control leaves and 1,346 spots in polyethylene glycol -treated leaves, of which 67 differentially expressed protein spots were obtained relative to the control. These data suggested that an efficient 2-DE platform with high repeatability and resolution for grass pea mature leaves had been established for the first time here, which could be further used to investigate the drought-resistance molecular mechanisms of grass pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号