首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspergillus nidulans produces the carcinogenic mycotoxin sterigmatocystin (ST), the next-to-last precursor in the aflatoxin (AF) biosynthetic pathway found in the closely related fungi Aspergillus flavus and Aspergillus parasiticus. We identified and characterized an A. nidulans gene, verA, that is required for converting the AF precursor versicolorin A to ST. verA is closely related to several polyketide biosynthetic genes involved in polyketide production in Streptomyces spp. and exhibits extended sequence similarity to A. parasiticus ver-1, a gene proposed to encode an enzyme involved in converting versicolorin A to ST. By performing a sequence analysis of the region 3' to verA, we identified two additional open reading frames, designated ORF1 and ORF2. ORF2 is closely related to a number of cytochrome P-450 monooxygenases, while ORF1 shares identity with the gamma subunit of translation elongation factor 1. Given that several steps in the ST-AF pathway may require monooxygenase activity and that AF biosynthetic genes are clustered in A. flavus and A. parasiticus, we suggest that verA may be part of a cluster of genes required for ST biosynthesis. We disrupted the verA coding region by inserting the A. nidulans argB gene into the center of the coding region and transformed an A. nidulans argB2 mutant to arginine prototrophy. Seven transformants that produced DNA patterns indicative of a verA disruption event were grown under ST-inducing conditions, and all of the transformants produced versicolorin A but negligible amounts of ST (200-fold to almost 1,000-fold less than the wild type), confirming the hypothesis that verA encodes an enzyme necessary for converting versicolorin A to ST.  相似文献   

2.
3.
4.
5.
Within the Aspergillus parasiticus and A. flavus aflatoxin (AF) biosynthetic gene cluster the aflQ (ordA) and aflP (omtA) genes encode respectively an oxidoreductase and methyltransferase. These genes are required for the final steps in the conversion of sterigmatocystin (ST) to aflatoxin B(1) (AFB(1)). Aspergillus nidulans harbors a gene cluster that produces ST, as the aflQ and aflP orthologs are either non-functional or absent in the genome. Aspergillus ochraceoroseus produces both AF and ST, and it harbors an AF/ST biosynthetic gene cluster that is organized much like the A. nidulans ST cluster. The A. ochraceoroseus cluster also does not contain aflQ or aflP orthologs. However the ability of A. ochraceoroseus to produce AF would indicate that functional aflQ and aflP orthologs are present within the genome. Utilizing degenerate primers based on conserved regions of the A. flavus aflQ gene and an A. nidulans gene demonstrating the highest level of homology to aflQ, a putative aflQ ortholog was PCR amplified from A. ochraceoroseus genomic DNA. The A. ochraceoroseus aflQ ortholog demonstrated 57% amino acid identity to A. flavus AflQ. Transformation of an O-methylsterigmatocystin (OMST)-accumulating A. parasiticus aflQ mutant with the putative A. ochraceoroseus aflQ gene restored AF production. Although the aflQ gene does not reside in the AF/ST cluster it appears to be regulated in a manner similar to other A. ochraceoroseus AF/ST cluster genes. Phylogenetic analysis of AflQ and AflQ-like proteins from a number of ST- and AF-producing Aspergilli indicates that A. ochraceoroseus might be ancestral to A. nidulans and A. flavus.  相似文献   

6.
7.
Aflatoxins are toxic and carcinogenic polyketides produced by several Aspergillus species that are known to contaminate agricultural commodities, posing a serious threat to animal and human health. Aflatoxin (AF) biosynthesis is almost fully characterized and involves the coordinated expression of approximately 25 genes clustered in a 70-kb DNA region. Aspergillus parasiticus is an economically important and common agent of AF contamination. Naturally occurring nonaflatoxigenic strains of A. parasiticus are rarely found and generally produce O-methylsterigmatocystin (OMST), the immediate precursor of AF. To elucidate the evolutionary forces acting to retain AF and OMST pathway extrolites (chemotypes), we sequenced 21 intergenic regions spanning the entire cluster in 24 A. parasiticus isolates chosen to represent the genetic diversity within a single Georgia field population. Linkage disequilibrium analyses revealed five distinct recombination blocks in the A. parasiticus cluster. Phylogenetic network analyses showed a history of recombination between chemotype-specific haplotypes, as well as evidence of contemporary recombination. We performed coalescent simulations of variation in recombination blocks and found an approximately twofold deeper coalescence for cluster genealogies compared to noncluster genealogies, our internal standard of neutral evolution. Significantly deeper cluster genealogies are indicative of balancing selection in the AF cluster of A. parasiticus and are further corroborated by the existence of trans-species polymorphisms and common haplotypes in the cluster for several closely related species. Estimates of Ka/Ks for representative cluster genes provide evidence of selection for OMST and AF chemotypes, and indicate a possible role of chemotypes in ecological adaptation and speciation.  相似文献   

8.
9.
AIMS: To compare the biosynthetic gene cluster sequences of the main aflatoxin (AF)-producing Aspergillus species. METHODS AND RESULTS: Sequencing was on fosmid clones selected by homology to Aspergillus parasiticus sequence. Alignments revealed that gene order is conserved among AF gene clusters of Aspergillus nomius, A. parasiticus, two sclerotial morphotypes of Aspergillus flavus, and an unnamed Aspergillus sp. Phylogenetic relationships were established using the maximum likelihood method implemented in PAUP. Based on the Eurotiomycete/Sordariomycete divergence time, the A. flavus-type cluster has been maintained for at least 25 million years. Such conservation of the genes and gene order reflects strong selective constraints on rearrangement. Phylogenetic comparison of individual genes in the cluster indicated that ver-1, which has homology to a melanin biosynthesis gene, experienced selective forces distinct from the other pathway genes. Sequences upstream of the polyketide synthase-encoding gene vary among the species, but a four-gene sugar utilization cluster at the distal end is conserved, indicating a functional relationship between the two adjacent clusters. CONCLUSIONS: The high conservation of cluster components needed for AF production suggests there is an adaptive value for AFs in character-shaping niches important to those taxa. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first comparison of the complete nucleotide sequences of gene clusters harbouring the AF biosynthesis genes of the main AF-producing species. Such a comparison will aid in understanding how AF biosynthesis is regulated in experimental and natural environments.  相似文献   

10.
T S Wu  J E Linz 《Applied microbiology》1993,59(9):2998-3002
Functional disruption of the gene encoding nitrate reductase (niaD) in Aspergillus parasiticus was conducted by two strategies, one-step gene replacement and the integrative disruption. Plasmid pPN-1, in which an internal DNA fragment of the niaD gene was replaced by a functional gene encoding orotidine monophosphate decarboxylase (pyrG), was constructed. Plasmid pPN-1 was introduced in linear form into A. parasiticus CS10 (ver-1 wh-1 pyrG) by transformation. Approximately 25% of the uridine prototrophic transformants (pyrG+) were chlorate resistant (Chlr), demonstrating their inability to utilize nitrate as a sole nitrogen source. The genetic block in nitrate utilization was confirmed to occur in the niaD gene by the absence of growth of the A. parasiticus CS10 transformants on medium containing nitrate as the sole nitrogen source and the ability to grow on several alternative nitrogen sources. Southern hybridization analysis of Chlr transformants demonstrated that the resident niaD locus was replaced by the nonfunctional allele in pPN-1. To generate an integrative disruption vector (pSKPYRG), an internal fragment of the niaD gene was subcloned into a plasmid containing the pyrG gene as a selectable marker. Circular pSKPYRG was transformed into A. parasiticus CS10. Chlr pyrG+ transformants were screened for nitrate utilization and by Southern hybridization analysis. Integrative disruption of the genomic niaD gene occurred in less than 2% of the transformants. Three gene replacement disruption transformants and two integrative disruption transformants were tested for mitotic stability after growth under nonselective conditions. All five transformants were found to stably retain the Chlr phenotype after growth on nonselective medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Disruption of the aflatoxin biosynthesis cluster gene aflY (hypA) gave Aspergillus parasiticus transformants that accumulated versicolorin A. This gene is predicted to encode the Baeyer-Villiger oxidase necessary for formation of the xanthone ring of the aflatoxin precursor demethylsterigmatocystin.  相似文献   

12.
The trpC gene in the tryptophan biosynthetic pathway was isolated from an aflatoxigenic Aspergillus parasiticus by complementation of an Escherichia coli trpC mutant lacking phosphoribosylanthranilate isomerase (PRAI) activity. The cloned gene complemented an E. coli trpC mutant deficient in indoleglycerolphosphate synthase (IGPS) activity as well as an Aspergillus nidulans mutant strain that was defective in all three enzymatic activities of the trpC gene (glutamine amidotransferase, IGPS, and PRAI), thus indicating the presence of a complete and functional trpC gene. The location and organization of the A. parasiticus trpC gene on the cloned DNA fragment were determined by deletion mapping and by hybridization to heterologous DNA probes that were prepared from cloned trpC genes of A. nidulans and Aspergillus niger. These experiments suggested that the A. parasiticus trpC gene encoded a trifunctional polypeptide with a functional domain structure organized identically to those of analogous genes from other filamentous fungi. The A. parasiticus trpC gene was expressed constitutively regardless of the nutritional status of the culture medium. This gene should be useful as a selectable marker in developing a DNA-mediated transformation system to analyze the aflatoxin biosynthetic pathway of A. parasiticus.  相似文献   

13.
J S Horng  J E Linz    J J Pestka 《Applied microbiology》1989,55(10):2561-2568
The trpC gene in the tryptophan biosynthetic pathway was isolated from an aflatoxigenic Aspergillus parasiticus by complementation of an Escherichia coli trpC mutant lacking phosphoribosylanthranilate isomerase (PRAI) activity. The cloned gene complemented an E. coli trpC mutant deficient in indoleglycerolphosphate synthase (IGPS) activity as well as an Aspergillus nidulans mutant strain that was defective in all three enzymatic activities of the trpC gene (glutamine amidotransferase, IGPS, and PRAI), thus indicating the presence of a complete and functional trpC gene. The location and organization of the A. parasiticus trpC gene on the cloned DNA fragment were determined by deletion mapping and by hybridization to heterologous DNA probes that were prepared from cloned trpC genes of A. nidulans and Aspergillus niger. These experiments suggested that the A. parasiticus trpC gene encoded a trifunctional polypeptide with a functional domain structure organized identically to those of analogous genes from other filamentous fungi. The A. parasiticus trpC gene was expressed constitutively regardless of the nutritional status of the culture medium. This gene should be useful as a selectable marker in developing a DNA-mediated transformation system to analyze the aflatoxin biosynthetic pathway of A. parasiticus.  相似文献   

14.
15.
16.
17.
18.
19.
An actinomycetes expression vector (pIBR25) was constructed and applied to express a gene from the kanamycin biosynthetic gene cluster encoding 2-deoxy-scyllo-inosose synthase (kanA) in Streptomyces lividans TK24. The expression of kanA in pIBR25 transformants reached a maximum after 72 h of culture. The plasmid pIBR25 showed better expression than pSET152, and resulted in the formation of insoluble KanA when it was expressed in Escherichia coli. This strategy thus provides a valuable tool for expressing aminoglycoside-aminocyclitols (AmAcs) biosynthetic genes in Streptomyces spp.  相似文献   

20.
Sterigmatocystin (ST) and aflatoxin B(1) (AFB(1)) are two polyketide-derived Aspergillus mycotoxins synthesized by functionally identical sets of enzymes. ST, the compound produced by Aspergillus nidulans, is a late intermediate in the AFB(1) pathway of A. parasiticus and A. flavus. Previous biochemical studies predicted that five oxygenase steps are required for the formation of ST. A 60-kb ST gene cluster in A. nidulans contains five genes, stcB, stcF, stcL, stcS, and stcW, encoding putative monooxygenase activities. Prior research showed that stcL and stcS mutants accumulated versicolorins B and A, respectively. We now show that strains disrupted at stcF, encoding a P-450 monooxygenase similar to A. parasiticus avnA, accumulate averantin. Disruption of either StcB (a putative P-450 monooxygenase) or StcW (a putative flavin-requiring monooxygenase) led to the accumulation of averufin as determined by radiolabeled feeding and extraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号