首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
S-Adenosylhomocysteine hydrolase (SahH) is involved in the degradation of the compound which inhibits methylation reactions. Using a Bayesian approach and other methods, we reconstructed a phylogenetic tree of amino acid sequences of this protein originating from all three major domains of living organisms. The SahH sequences formed two major branches: one composed mainly of Archaea and the other of eukaryotes and majority of bacteria, clearly contradicting the three-domain topology shown by small subunit rRNA gene. This topology suggests the occurrence of lateral transfer of this gene between the domains. Poor resolution of eukaryotes and bacteria excluded an ultimate conclusion in which out of the two domains this gene appeared first, however, the congruence of the secondary branches with SS rRNA and/or concatenated ribosomal protein datasets phylogenies suggested an "early" acquisition by some bacterial and eukaryotic phyla. Similarly, the branching pattern of Archaea reflected the phylogenies shown by SS rRNA and ribosomal proteins. SahH is widespread in Eucarya, albeit, due to reductive evolution, it is missing in the intracellular parasite Encephalitozoon cuniculi. On the other hand, the lack of affinity to the sequences from the alpha-Proteobacteria and cyanobacteria excludes a possibility of its acquisition in the course of mitochondrial or chloroplast endosymbioses. Unlike Archaea, most bacteria carry MTA/SAH nucleosidase, an enzyme involved also in metabolism of methylthioadenosine. However, the double function of MTA/SAH nucleosidase may be a barrier to ensure the efficient degradation of S-adenosylhomocysteine, specially when the intensity of methylation processes is high. This would explain the presence of S-adenosylhomocysteine hydrolase in the bacteria that have more complex metabolism. On the other hand, majority of obligate pathogenic bacteria due to simpler metabolism rely entirely on MTA/SAH nucleosidase. This could explain the observed phenetic pattern in which bacteria with larger (>6 Mb-million base pairs) genomes carry SAH hydrolase, whereas bacteria that have undergone reductive evolution usually carry MTA/SAH nucleosidase. This suggests that the presence or acquisition of S-adenosylhomocysteine hydrolase in bacteria may predispose towards higher metabolic, and in consequence, higher genomic complexity. The good examples are the phototrophic bacteria all of which carry this gene, however, the SahH phylogeny shows lack of congruence with SSU rRNA and photosyntethic genes, implying that the acquisition was independent and presumably preceded the acquisition of photosyntethic genes. The majority of cyanobacteria acquired this gene from Archaea, however, in some species the sahH gene was replaced by a copy from the beta- or gamma-Proteobacteria.  相似文献   

2.
In this study, two-component system (TCS) gene profile and metabolic network gene profile based phylogenetic trees were constructed and compared to each other to evaluate the evolutionary relationship between the bacterial sensing system and metabolism. The gene profiles of the these systems suggested that bacteria employed different evolutionary strategies to optimize the two-component system and metabolic network. In addition, comparative analysis revealed that the TCS based tree showed better family grouping than the metabolic network based tree, which indicated that the TCS and metabolic network have been modified via self-evolution and recruitment methods, respectively.  相似文献   

3.
Horizontal gene transfer (HGT) has been shown to widely spread in organisms by comparative genomic studies. However, its effect on the phylogenetic relationship of organisms, especially at a system level of different cellular functions, is still not well understood. In this work, we have constructed phylogenetic trees based on the enzyme, reaction, and gene contents of metabolic networks reconstructed from annotated genome information of 82 sequenced organisms. Results from different phylogenetic distance definitions and based on three different functional subsystems (i.e., metabolism, cellular processes, information storage and processing) were compared. Results based on the three different functional subsystems give different pictures on the phylogenetic relationship of organisms, reflecting the different extents of HGT in the different functional systems. In general, horizontal transfer is prevailing in genes for metabolism, but less in genes for information processing. Nevertheless, the major results of metabolic network-based phylogenetic trees are in good agreement with the tree based on 16S rRNA and genome trees, confirming the three domain classification and the close relationship between eukaryotes and archaea at the level of metabolic networks. These results strongly support the hypothesis that although HGT is widely distributed, it is nevertheless constrained by certain pre-existing metabolic organization principle(s) during the evolution. Further research is needed to identify the organization principle and constraints of metabolic network on HGT which have large impacts on understanding the evolution of life and in purposefully manipulating cellular metabolism.  相似文献   

4.
Cytochrome oxidase is a key enzyme in aerobic metabolism. All the recorded eubacterial (domain Bacteria) and archaebacterial (Archaea) sequences of subunits 1 and 2 of this protein complex have been used for a comprehensive evolutionary analysis. The phylogenetic trees reveal several processes of gene duplication. Some of these are ancient, having occurred in the common ancestor of Bacteria and Archaea, whereas others have occurred in specific lines of Bacteria. We show that eubacterial quinol oxidase was derived from cytochrome c oxidase in Gram-positive bacteria and that archaebacterial quinol oxidase has an independent origin. A considerable amount of evidence suggests that Proteobacteria (Purple bacteria) acquired quinol oxidase through a lateral gene transfer from Gram-positive bacteria. The prevalent hypothesis that aerobic metabolism arose several times in evolution after oxygenic photosynthesis, is not sustained by two aspects of the molecular data. First, cytochrome oxidase was present in the common ancestor of Archaea and Bacteria whereas oxygenic photosynthesis appeared in Bacteria. Second, an extant cytochrome oxidase in nitrogen-fixing bacteria shows that aerobic metabolism is possible in an environment with a very low level of oxygen, such as the root nodules of leguminous plants. Therefore, we propose that aerobic metabolism in organisms with cytochrome oxidase has a monophyletic and ancient origin, prior to the appearance of eubacterial oxygenic photosynthetic organisms.  相似文献   

5.
Aminoacyl-tRNA synthetases catalyze a fundamental reaction for the flow of genetic information from RNA to protein. Their presence in all organisms known today highlights their important role in the early evolution of life. We investigated the evolutionary history of aminoacyl-tRNA synthetases on the basis of sequence data from more than 200 Archaea, Bacteria, and Eukaryota. Phylogenetic profiles are in agreement with previous observations that many genes for aminoacyl-tRNA synthetases were transferred horizontally between species from all domains of life. We extended these findings by a detailed analysis of the history of leucyl-tRNA synthetases. Thereby, we identified a previously undetected case of horizontal gene transfer from Bacteria to Archaea based on phylogenetic profiles, trees, and networks. This means that, finally, the last subfamily of aminoacyl-tRNA synthetases has lost its exceptional position as the sole subfamily that is devoid of horizontal gene transfer. Furthermore, the leucyl-tRNA synthetase phylogenetic tree suggests a dichotomy of the archaeal/eukaryotic-cytosolic and bacterial/eukaryotic-mitochondrial proteins. We argue that the traditional division of life into Prokaryota (non-chimeric) and Eukaryota (chimeric) is favorable compared to Woese’s trichotomy into Archaea/Bacteria/Eukaryota. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

6.
Melanogenesis is a complex multistep process of high molecular weight melanins production by hydroxylation and polymerization of polyphenols. Melanins have a wide range of applications other than being a sun - protection pigment. Melanogenesis pathway exists from prokaryotes to eukaryotes. It has evolved over years owing to the fact that the melanin pigment has different roles in diverse taxa of organisms. Melanin plays a pivotal role in the existence of certain bacteria and fungi whereas in higher organisms it is a measure of protection against the harmful radiation. We have done a detailed study on various pathways known for melanin synthesis across species. It was divulged that melanin production is not restricted to tyrosine but there are other secondary metabolites that synthesize melanin in lower organisms. Furthermore the phylogenetic study of these paths was done to understand their molecular and cellular development. It has revealed that the melanin synthesis paths have co-evolved in several groups of organisms. In this study, we also introduce a method for the comparative analysis of a metabolic pathway to study its evolution based on similarity between enzymatic reactions.  相似文献   

7.
We constructed genomic trees based on the presence and absence of families of protein‐encoding genes observed in 55 prokaryotic and five eukaryotic genomes. There are features of the genomic trees that are not congruent with typical rRNA phylogenetic trees. In the bacteria, for example, Deinococcus radiodurans associates with the Gram‐positive bacteria, a result that is also seen in some other phylogenetic studies using whole genome data. In the Archaea, the methanogens plus Archaeoglobus form a united clade and the Euryarchaeota are divided with the two Thermoplasma genomes and Halobacterium sp. falling below the Crenarchaeota. While the former appears to be an accurate representation of methanogen‐relatedness, the misplacement of Halobacterium may be an artefact of parsimony. These results imply the last common ancestor of the Archaea was not a methanogen, leaving sulphur reduction as the most geochemically plausible metabolism for the base of the archaeal crown group. It also suggests that methanogens were not a component of the Earth's earliest biosphere and that their origin occurred sometime during the Archean. In the Eukarya, the parsimony analysis of five Eukaryotes using the Crenarchaeota as an outgroup seems to counter the Ecdysozoa hypothesis, placing Caenorhabditis elegans (Nematoda) below the common ancestor of Drosophila melanogaster (Arthropoda) and Homo sapiens (Chordata) even when efforts are made to counter the possible effects of a faster rate of sequence evolution for the C. elegans genome. Further analysis, however, suggests that the gene loss of ‘animal’ genes is highest in C. elegans and is obscuring the relationships of these organisms.  相似文献   

8.
The information provided by completely sequenced genomes of methanogens can yield insights into a deeper molecular understanding of evolutionary mechanisms.This review describes the advantages of using...  相似文献   

9.
An accurate understanding of evolutionary relationships is central in biology. For parasitologists, understanding the relationships among eukaryotic organisms allows the prediction of virulence mechanisms, reconstruction of metabolic pathways, identification of potential drug targets, elucidation of parasite-specific cellular processes and understanding of interactions with the host or vector. Here we consider the impact of major recent revisions of eukaryotic systematics and taxonomy on parasitology. The previous, ladder-like model placed some protists as early diverging, with the remaining eukaryotes “progressing” towards a “crown radiation” of animals, plants, Fungi and some additional protistan lineages. This model has been robustly disproven. The new model is based on vastly increased amounts of molecular sequence data, integration with morphological information and the rigorous application of phylogenetic methods to those data. It now divides eukaryotes into six major supergroups; the relationships between those groups and the order of branching remain unknown. This new eukaryotic phylogeny emphasizes that organisms including Giardia, Trypanosoma and Trichomonas are not primitive, but instead highly evolved and specialised for their specific environments. The wealth of newly available comparative genomic data has also allowed the reconstruction of ancient suites of characteristics and mapping of character evolution in diverse parasites. For example, the last common eukaryotic ancestor was apparently complex, suggesting that lineage-specific adaptations and secondary losses have been important in the evolution of protistan parasites. Referring to the best evidence-based models for eukaryotic evolution will allow parasitologists to make more accurate and reliable inferences about pathogens that cause significant morbidity and mortality.  相似文献   

10.
以密码对使用偏好性和密码对中二核苷酸频率分别构建了系统发育树。发现用40种模式生物编码序列中密码对的二核苷酸频率构建的系统发育树,明显将生物按进化分成细菌,古菌,真核生物;用密码对使用偏好性指标构建的系统发育树与基于密码对中二核苷酸频率的系统发育树基本一致。结果表明密码对中二核苷酸组分是密码对偏好的决定因素之一。  相似文献   

11.
Chen LL  Chung WC  Lin CP  Kuo CH 《PloS one》2012,7(3):e34407
Phytoplasmas and mycoplasmas are two groups of important pathogens in the bacterial class Mollicutes. Because of their economical and clinical importance, these obligate pathogens have attracted much research attention. However, difficulties involved in the empirical study of these bacteria, particularly the fact that phytoplasmas have not yet been successfully cultivated outside of their hosts despite decades of attempts, have greatly hampered research progress. With the rapid advancements in genome sequencing, comparative genome analysis provides a new approach to facilitate our understanding of these bacteria. In this study, our main focus is to investigate the evolution of gene content in phytoplasmas, mycoplasmas, and their common ancestor. By using a phylogenetic framework for comparative analysis of 12 complete genome sequences, we characterized the putative gains and losses of genes in these obligate parasites. Our results demonstrated that the degradation of metabolic capacities in these bacteria has occurred predominantly in the common ancestor of Mollicutes, prior to the evolutionary split of phytoplasmas and mycoplasmas. Furthermore, we identified a list of genes that are acquired by the common ancestor of phytoplasmas and are conserved across all strains with complete genome sequences available. These genes include several putative effectors for the interactions with hosts and may be good candidates for future functional characterization.  相似文献   

12.
The most probable horizontal gene transfer events in the evolution of Archaea are reconstructed based on the comparison of phylogenetic trees of housekeeping orthologous protein families with consensus phylogenies of Archaea. The existence of these phenomena suggests that the common ancestor of Archaea was of methanogenic and hyperthermophilic nature and dwelt in communities with a high level of ecological integration.  相似文献   

13.
Sequencing of the Rickettsia conorii genome and its comparison with its closest sequenced pathogenic relative, i.e., Rickettsia prowazekii, provided powerful insights into the evolution of these microbial pathogens. However, advances in our knowledge of rickettsial diseases are still hindered by the difficulty of working with strict intracellular bacteria and their hosts. Information gained from comparing the genomes of closely related organisms will shed new light on proteins susceptible to be targeted in specific diagnostic assays, by new antimicrobial drugs, and that could be employed in the generation of future rickettsial vaccines. In this review we present a detailed comparison of the metabolic pathways of these bacteria as well as the polymorphisms of their membrane proteins, transporters and putative virulence factors. Environmental adaptation of Rickettsia is also discussed.  相似文献   

14.
ABSTRACT: BACKGROUND: A large number of genome-scale metabolic networks is now available for many organisms, mostly bacteria. Previous works on minimal gene sets, when analysing host-dependent bacteria, found small common sets of metabolic genes. When such analyses are restricted to bacteria with similar lifestyles, larger portions of metabolism are expected to be shared and their composition is worth investigating. Here we report a comparative analysis of the small molecule metabolism of symbiotic bacteria, exploring common and variable portions as well as the contribution of different lifestyle groups to the reduction of a common set of metabolic capabilities. RESULTS: We found no reaction shared by all the bacteria analysed. Disregarding those with the smallest genomes, we still do not find a reaction core, however we did find a core of biochemical capabilities. While obligate intracellular symbionts have no core of reactions within their group, extracellular and cell-associated symbionts do have a small core composed of disconnected fragments. In agreement with previous findings in Escherichia coli, their cores are enriched in biosynthetic processes whereas the variable metabolisms have similar ratios of biosynthetic and degradation reactions. Conversely, the variable metabolism of obligate intracellular symbionts is enriched in anabolism. CONCLUSION: Even when removing the symbionts with the most reduced genomes, there is no core of reactions common to the analysed symbiotic bacteria. The main reason is the very high specialisation of obligate intracellular symbionts, however, host-dependence alone is not an explanation for such absence. The composition of the metabolism of cell-associated and extracellular bacteria shows that while they have similar needs in terms of the building blocks of their cells, they have to adapt to very distinct environments. On the other hand, in obligate intracellular bacteria, catabolism has largely disappeared, whereas synthetic routes appear to have been selected for depending on the nature of the symbiosis. As more genomes are added, we expect, based on our simulations, that the core of cell-associated and extracellular bacteria continues to diminish, converging to approximately 60 reactions.  相似文献   

15.
The evolution of five island populations of Green gecko, representing inter- and intra-specific divergence, was studied using biochemical data, scalation and shape. The data were numerically analysed using ordination analyses for the phenetic classification and Wagner trees to hypothesize the phylogeny. These studies revealed three phenetic groups corresponding to three mono-phyletic lineages. The numerical analysis of morphological data agreed with the numerical analysis of biochemical data. It is concluded that the classification based on biochemical affinities differed from the previous classification based on conventional analysis of morphology due to methodological and philosophical differences rather than differences between morphological and biochemical evolution.
The ordination analyses were very congruent between data sets (biochemical, shape, scalation, total) and the Wagner trees were generally congruent between data sets. Some Wagner trees based on scalation data were incongruent. The phenetic and cladistic classifications corresponded to each other but differed from the conventional classification. The phylogenetic analysis of the total data set indicated that the three specific lineages showed relatively equal anagenesis. However, anagenic divergence differed markedly between character types. It is suggested that a range of character types be used when studying anagenesis.  相似文献   

16.
Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.  相似文献   

17.
J Kaster  J Berger 《Bio Systems》1977,9(4):195-200
A model is proposed which considers the structural relationships of body characteristics and their role in a concept wherein the phylogenetic relationship of the organisms under study is interpreted as constituting degrees of convergent or parallel evolution. The model also accounts for the relationships between selection pressures, phylogeny, and phenetic expression. The phenomena of convergent and parallel evolution are based upon the observations of similar characteristics, the geometric concept, magnitude and similarity of selection pressures, and the phylogenetic relationship of the groups in question.  相似文献   

18.
The chlamydial developmental cycle   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
The phylogenetic analyses as far as the identification of the number of domains of life is concerned have not reached a clear conclusion. In the attempt to improve this circumstance, I introduce the concept that the amino acids codified in the genetic code might be of markers with outstanding phylogenetic power. In particular, I hypothesise the existence of a biosphere populated, for instance, by three groups of organisms having different genetic codes because codifying at least a different amino acid. Evidently, these amino acids would mark the proteins that are present in the three groups of organisms in an unambiguous way. Therefore, in essence, this mark would not be other than the one that we usually try to make in the phylogenetic analyses in which we transform the protein sequences in phylogenetic trees, for the purpose to identify, for example, the domains of life. Indeed, this mark would allow to classify proteins without performing phylogenetic analyses because proteins belonging to a group of organisms would be recognisable as marked in a natural way by at least a different amino acid among the diverse groups of organisms. This conceptualisation answers the question of how many fundamental kinds of cells have evolved from the Last Universal Common Ancestor (LUCA), as the genetic code has unique proprieties that make the codified amino acids excellent phylogenetic markers. The presence of the formyl-methionine only in proteins of bacteria would mark them and would identify these as domain of life. On the other hand, the presence of pyrrolysine in the genetic code of the euryarchaeota would identify them such as another fundamental kind of cell evolved from the LUCA. Overall, the phylogenetic distribution of formyl-methionine and pyrrolysine would identify at least two domains of life—Bacteria and Archaea—but their number might be actually four; that is to say, Bacteria, Euryarchaeota, archeobacteria that are not euryarchaeota and Eukarya. The usually accepted domains of life represented by Bacteria, Archaea and Eukarya are not compatible with the phylogenetic distribution of these two amino acids and therefore this last classification might be mistaken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号