首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物抗病反应的信号传导网络   总被引:7,自引:0,他引:7  
植物由抗病基因介导的防卫过程存在一系列生理生化和分子生物学反应,这些反应从病原菌侵染点开始的超敏反应(HR)并延伸到远处组织的系统抗性或获得性抗性(SAR),受制于一种信号传导网络的调控。这个信号系统由抗病蛋白和病原菌非毒性蛋白在一种配体-受体的互作模式下激发,并由信号分子H2O2,NO和系统信号分子SA,JA和乙烯和通过关键调控基因传递和放大,最终诱导一系列防卫反应基因的表达和代谢的变化而产生抗性。植物防卫信号的产生有类似于动物免疫系统因子的介导,并可由非寄主病原菌或诱导子诱发。这些信号途径所产生的广谱抗性为植物抗病基因工程的应用奠定了基础。  相似文献   

2.
To discover which components of plant defense responses make significant contributions to limiting pathogen attack, we screened a mutagenized population of Arabidopsis thaliana for individuals that exhibit increased susceptibility to the moderately virulent bacterial pathogen Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326). The 12 enhanced disease susceptibility (eds) mutants isolated included alleles of two genes involved in phytoalexin biosynthesis (pad2, which had been identified previously, and pad4, which had not been identified previously), two alleles of the previously identified npr1 gene, which affects expression of other defense genes, and alleles of seven previously unidentified genes of unknown function. The npr1 mutations caused greatly reduced expression of the PR1 gene in response to PsmES4326 infection, but had little effect on expression of two other defense genes, BGL2 and PR5, suggesting that PR1 expression may be important for limiting growth of PsmES4326. While direct screens for mutants with quantitative pathogen-susceptibility phenotypes have not been reported previously, our finding that mutants isolated in this way include those affected in known defense responses supports the notion that this type of screening strategy allows genetic dissection of the roles of various plant defense responses in disease resistance.  相似文献   

3.
4.
Mayda E  Mauch-Mani B  Vera P 《The Plant cell》2000,12(11):2119-2128
To determine which components of the plant defense response make important contributions to limiting pathogen attack, an M(2) mutagenized population of a transgenic Arabidopsis line was screened for mutants showing constitutive expression of beta-glucuronidase activity driven by the promoter region of the CEVI-1 gene. The CEVI-1 gene originally was isolated from tomato plants and has been shown to be induced in susceptible varieties of tomato plants by virus infection in a salicylic acid-independent manner. We report here the characterization of a recessive mutant, detachment9 (dth9). This mutant is more susceptible to both virulent and avirulent forms of the oomycete Peronospora and also exhibits increased susceptibility to the moderately virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326. However, this mutant is not affected in salicylic acid metabolism and shows normal expression of pathogenesis-related (PR) genes after pathogen attack. Furthermore, after inoculation with avirulent pathogens, the dth9 mutant shows a compromised systemic acquired resistance response that cannot be complemented by exogenous application of salicylic acid, although this molecule is able to promote normal activation of PR genes. Therefore, the dth9 mutation defines a regulator of disease susceptibility that operates upstream or independently of salicylic acid. Pleiotropy is also evident in the dth9 mutant in the sense that the shoots of dth9 plants are insensitive to the exogenously applied auxin analog 2,4-dichlorophenoxyacetic acid.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Microarray analysis of large-scale temporal and tissue-specific plant gene expression changes occurring during a susceptible plant-pathogen interaction revealed different gene expression profile changes in cotton root and hypocotyl tissues. In hypocotyl tissues infected with Fusarium oxysporum f. sp. vasinfectum, increased expression of defense-related genes was observed, whereas few changes in the expression levels of defense-related genes were found in infected root tissues. In infected roots, more plant genes were repressed than were induced, especially at the earlier stages of infection. Although many known cotton defense responses were identified, including induction of pathogenesis-related genes and gossypol biosynthesis genes, potential new defense responses also were identified, such as the biosynthesis of lignans. Many of the stress-related gene responses were common to both tissues. The repression of drought-responsive proteins such as aquaporins in both roots and hypocotyls represents a previously unreported response of a host to pathogen attack that may be specific to vascular wilt diseases. Gene expression results implicated the phytohormones ethylene and auxin in the disease process. Biochemical analysis of hormone level changes supported this observation.  相似文献   

14.
15.

Background  

The hypersensitive necrosis response (HR) of resistant plants to avirulent pathogens is a form of programmed cell death in which the plant sacrifices a few cells under attack, restricting pathogen growth into adjacent healthy tissues. In spite of the importance of this defense response, relatively little is known about the plant components that execute the cell death program or about its regulation in response to pathogen attack.  相似文献   

16.
In the absence of pathogen attack, organisms usually suppress immune responses to reduce the negative effects of disease resistance. Monoubiquitination of histone variants at specific gene loci is crucial for gene expression, but its involvement in the regulation of plant immunity remains unclear. Here, we show that a rice SWI/SNF2 ATPase gene BRHIS1 is downregulated in response to the rice blast fungal pathogen or to the defense‐priming‐inducing compound BIT (1,2‐benzisothiazol‐3(2h)‐one,1, 1‐dioxide). The BRHIS1‐containing complex represses the expression of some disease defense‐related genes, including the pathogenesis‐related gene OsPBZc and the leucine‐rich‐repeat (LRR) receptor‐like protein kinase gene OsSIRK1. This is achieved through BRHIS1 recruitment to the promoter regions of target genes through specific interaction with monoubiquitinated histone variants H2B.7 and H2A.Xa/H2A.Xb/H2A.3, in the absence of pathogen attack or BIT treatment. Our results show that rice disease defense genes are initially organized in an expression‐ready state by specific monoubiquitination of H2A and H2B variants deposited on their promoter regions, but are kept suppressed by the BRHIS1 complex, facilitating the prompt initiation of innate immune responses in response to infection through the stringent regulation of BRHIS1.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号