首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication.  相似文献   

2.
3.
Han J  Liu G  Wang Y  Faaberg KS 《Journal of virology》2007,81(18):9878-9890
The nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) is a multidomain protein and has been shown to undergo remarkable genetic variation, primarily in its middle region, while exhibiting high conservation in the N-terminal putative protease domain and the C-terminal predicted transmembrane region. A reverse genetics system of PRRSV North American prototype VR-2332 was developed to explore the importance of different regions of nsp2 for viral replication. A series of mutants with in-frame deletions in the nsp2 coding region were engineered, and infectious viruses were subsequently recovered from transfected cells and further characterized. The results demonstrated that the cysteine protease domain (PL2), the PL2 downstream flanking sequence (amino acids [aa] 181 to 323), and the putative transmembrane domain were critical for replication. In contrast, the segment of nsp2 preceding the PL2 domain (aa 13 to 35) was dispensable for viral replication, and the nsp2 middle hypervariable region (aa 324 to 813) tolerated 100-aa or 200-aa deletions but could not be removed as a whole; the largest deletion was about 400 aa (nsp2Delta324-726). Characterization of the mutants demonstrated that those with small deletions possessed growth kinetics and RNA expression profiles similar to those of the parental virus, while the nsp2Delta324-726 mutant displayed decreased cytolytic activity on MARC-145 cells and did not develop visible plaques. Finally, the utilization of the genetic flexibility of nsp2 to express foreign genes was examined by inserting the gene encoding green fluorescent protein (GFP) in frame into one nsp2 deletion mutant construct. The recombinant virus was viable but impaired and unstable and gradually gained parental growth kinetics by the loss of most of the GFP gene.  相似文献   

4.
Aichi virus, a member of the family Picornaviridae, encodes a leader (L) protein of 170 amino acids (aa). The Aichi virus L protein exhibits no significant sequence homology to those of other picornaviruses. In this study, we investigated the function of the Aichi virus L protein in virus growth. In vitro translation and cleavage assays indicated that the L protein has no autocatalytic activity and is not involved in polyprotein cleavage. The L-VP0 junction was cleaved by 3C proteinase. Immunoblot analysis showed that the L protein is stably present in infected cells. Characterization of various L mutants derived from an infectious cDNA clone revealed that deletion of 93 aa of the center part (aa 43 to 135), 50 aa of the N-terminal part (aa 4 to 53), or 90 aa of the C-terminal part (aa 74 to 163) abolished viral RNA replication. A mutant (Delta114-163) in which 50 aa of the C-terminal part (aa 114 to 163) were deleted exhibited efficient RNA replication and translation abilities, but the virus yield was 4 log orders lower than that of the wild type. Sedimentation analysis of viral particles generated in mutant Delta114-163 RNA-transfected cells showed that the mutant has a severe defect in the formation of mature virions, but not in that of empty capsids. Thus, the data obtained in this study indicate that the Aichi virus L protein is involved in both viral RNA replication and encapsidation.  相似文献   

5.
甜菜黑色焦枯病毒外壳蛋白与病毒致病性的关系   总被引:1,自引:0,他引:1  
利用RT-PCR方法,构建获得了由T7RNA聚合酶启动子驱动的甜菜黑色焦枯病毒(BBSV)全长cDNA克隆pUBF52.摩擦接种苋色藜(Chenopodiumamaranticolor)后,体外转录产物可导致与野生病毒相同的枯斑症状,蛋白质印迹和RNA印迹检测也都证明了转录产物的侵染活性.构建了BBSVp24基因的原核表达载体pECP1,转化大肠杆菌BL21后的诱导表达产物能够与BBSV的抗血清呈现特异性反应,表明该基因编码产生BBSV的外壳蛋白(CP).以pUBF52为模板,分别构建了BBSVCP基因的移码突变体和不同程度的缺失突变体.侵染性检测表明,CP基因的移码突变对BBSV在苋色藜上所导致的枯斑症状及病毒RNA在寄主体内的积累基本没有影响,但CP基因的大部或完全缺失会使体内病毒RNA的积累水平大大降低,其中CP基因完全缺失的突变体转录物接种苋色藜后仅能够产生很轻的枯斑症状.将绿色荧光蛋白(GFP)基因和葡糖苷酸酶(GUS)基因分别与BBSVCP基因的5′端融合,构建了表达载体pBGFP和pBGUS.摩擦接种苋色藜叶片后可观察到GFP或GUS基因的表达,为探索利用BBSV作为外源蛋白的表达载体奠定了基础.  相似文献   

6.
In Shaker K(+) channels depolarization displaces outwardly the positively charged residues of the S4 segment. The amount of this displacement is unknown, but large movements of the S4 segment should be constrained by the length and flexibility of the S3-S4 linker. To investigate the role of the S3-S4 linker in the ShakerH4Delta(6-46) (ShakerDelta) K(+) channel activation, we constructed S3-S4 linker deletion mutants. Using macropatches of Xenopus oocytes, we tested three constructs: a deletion mutant with no linker (0 aa linker), a mutant containing a linker 5 amino acids in length, and a 10 amino acid linker mutant. Each of the three mutants tested yielded robust K(+) currents. The half-activation voltage was shifted to the right along the voltage axis, and the shift was +45 mV in the case of the 0 aa linker channel. In the 0 aa linker, mutant deactivation kinetics were sixfold slower than in ShakerDelta. The apparent number of gating charges was 12.6+/-0.6 e(o) in ShakerDelta, 12.7+/-0.5 in 10 aa linker, and 12.3+/-0.9 in 5 aa linker channels, but it was only 5.6+/-0.3 e(o) in the 0 aa linker mutant channel. The maximum probability of opening (P(o)(max)) as measured using noise analysis was not altered by the linker deletions. Activation kinetics were most affected by linker deletions; at 0 mV, the 5 and 0 aa linker channels' activation time constants were 89x and 45x slower than that of the ShakerDelta K(+) channel, respectively. The initial lag of ionic currents when the prepulse was varied from -130 to -60 mV was 0.5, 14, and 2 ms for the 10, 5, and 0 aa linker mutant channels, respectively. These results suggest that: (a) the S4 segment moves only a short distance during activation since an S3-S4 linker consisting of only 5 amino acid residues allows for the total charge displacement to occur, and (b) the length of the S3-S4 linker plays an important role in setting ShakerDelta channel activation and deactivation kinetics.  相似文献   

7.
8.
We conducted a deletion analysis of two regions identified in the II-III loop of alpha(1S), residues 671-690, which were shown to bind to ryanodine receptor type 1 (RyR1) and stimulate RyR1 channels in vitro, and residues 720-765 or the narrower 724-743 region, which confer excitation-contraction (EC) coupling function to chimeric dihydropyridine receptors (DHPRs). Deletion mutants were expressed in dysgenic alpha(1S)-null myotubes and analyzed by voltage-clamp and confocal fluo-4 fluorescence. Immunostaining of the mutant subunits using an N-terminus tag revealed abundant protein expression in all cases. Furthermore, the maximum recovered charge movement density was >80% of that recovered by full-length alpha(1S) in all cases. Delta671-690 had no effect on the magnitude of voltage-evoked Ca(2+) transients or the L-type Ca(2+) current density. In contrast, Delta720-765 or Delta724-743 abolished Ca(2+) transients entirely, and L-type Ca(2+) current was reduced or absent. Surprisingly, Ca(2+) transients and Ca(2+) currents of a moderate magnitude were recovered by the double deletion mutant Delta671-690/Delta720-765. A simple explanation for this result is that Delta720-765 induces a conformation change that disrupts EC coupling, and this conformational change is partially reverted by Delta671-690. To test for Ca(2+)-entry independent EC coupling, a pore mutation (E1014K) known to entirely abolish the inward Ca(2+) current was introduced. alpha(1S) Delta671-690/Delta720-765/E1014K expressed Ca(2+) transients with Boltzmann parameters identical to those of the Ca(2+)-conducting double deletion construct. The data strongly suggest that skeletal-type EC coupling is not uniquely controlled by alpha(1S) 720-765. Other regions of alpha(1S) or other DHPR subunits must therefore directly contribute to the activation of RyR1 during EC coupling.  相似文献   

9.
In vitro chloroplast import reactions and thylakoid association reactions have been performed with a series of C-terminal deletions and Cys-to-Ser substitution mutants of the pea NADPH:protochlorophyllide oxidoreductase (POR; EC 1.6.99). C-terminal deletions of the precursor POR (Delta362-400, Delta338-400, Delta315-400 and Delta300-400) were efficiently translocated across the chloroplast envelope. However, except the Delta396-400 mutant, no C-terminal deletion mutants or Cys-to-Ser substitution (Cys119, Cys281 and Cys309) mutants resisted post-treatment with thermolysin after the thylakoid association reactions. This suggests that these mutants were unable to properly associate to the thylakoids due to changes of the protein conformation of POR.  相似文献   

10.
A series of internal deletions of gene 3, coding for the phage phi 29 DNA terminal protein, have been constructed and characterized. In addition, a substitution mutant in the sequence corresponding to amino acids (aa) 49-51 was obtained. The priming activity of the substitution mutant protein, in the formation of the protein p3-dAMP initiation complex, was drastically reduced suggesting that some of the aa present at position 49-51 are essential for p3 function. Deletions of 8 to 33 aa, from aa residue 48 towards the N terminus of the substitution mutant, further decreased the priming activity of the protein. The activity of deletion mutants lacking 15 or 21 aa from residue 57 towards the C terminus, and also containing a point mutation at position 56, was greatly reduced, and no activity was seen when 24 aa were lacking.  相似文献   

11.
To investigate the role of the N terminus of apolipoprotein A-I (apoA-I) in the maturation of high density lipoproteins (HDL), two N-terminal mutants with deletions of residues 1-43 and 1-65 (referred to as Delta 1-43 and Delta 1-65 apoA-I) were studied. In vitro, these deletions had little effect on cellular cholesterol efflux from macrophages but LCAT activation was reduced by 50 and 70% for the Delta 1-43 and Delta 1-65 apoA-I mutants, respectively, relative to wild-type (Wt) apoA-I. To further define the role of the N terminus of apoA-I in HDL maturation, we constructed recombinant adenoviruses containing Wt apoA-I and two similar mutants with deletions of residues 7-43 and 7-65 (referred to as Delta 7-43 and Delta 7-65 apoA-I, respectively). Residues 1-6 were not removed in these mutants to allow proper cleavage of the pro-sequence in vivo. Following injection of these adenoviruses into apoA-I-deficient mice, plasma concentrations of both Delta 7-43 and Delta 7-65 apoA-I were reduced 4-fold relative to Wt apoA-I. The N-terminal deletion mutants, in particular Delta 7-65 apoA-I, were associated with greater proportions of pre beta-HDL and accumulated fewer HDL cholesteryl esters relative to Wt apoA-I. Wt and Delta 7-43 apoA-I formed predominantly alpha-migrating and spherical HDL, whereas Delta 7-65 apoA-I formed only pre beta-HDL of discoidal morphology. This demonstrates that deletion of the first class A amphipathic alpha-helix has a profound additive effect in vivo over the deletion of the globular domain alone (amino acids 1-43) indicating its important role in the production of mature alpha-migrating HDL. In summary, the combined in vitro and in vivo studies demonstrate a role for the N terminus of apoA-I in lecithin:cholesterol acyltransferase activation and the requirement of the first class A amphipathic alpha-helix for the maturation of HDL in vivo.  相似文献   

12.
13.
The contribution of the amphipathic alpha-helices of apoA-I toward lipid efflux from human skin fibroblasts and macrophage was examined. Four apoA-I mutants were designed, each by deletion of a pair of predicted adjacent helices. Three mutants lacked two consecutive central alpha-helices [Delta(100-143), Delta(122-165), and Delta(144-186)], whereas the final mutant lacked the C-terminal domain [Delta(187-243)]. When compared to recombinant wild-type apoA-I and mutants with central domain deletions, Delta(187-243) exhibited a marked reduction in its ability to promote either cholesterol or phospholipid efflux from THP-1 macrophages. This mutant also demonstrated a decreased ability to bind lipids and to form lipoprotein complexes. In contrast, the four mutants and apoA-I equally supported cholesterol efflux from fibroblasts, albeit with a reduced capacity when compared to macrophages. Delta(187-243) bound poorly to the macrophage cell surface when compared to apoA-I, and competitive binding studies with the central domain and C-terminal deletions mutants showed that only Delta(187-243) did not compete effectively with [(125)I]apoA-I. Omission of PMA during cholesterol loading enhanced cholesterol efflux to both apoA-I (1.5-fold) and the C-terminal deletion mutant (2.5-fold). Inclusion of the Sandoz ACAT inhibitor (58-035) during loading and, in the absence of PMA, increased and equalized cholesterol efflux to apoA-I and Delta(187-243). Surprisingly, omission of PMA during cholesterol loading had minimal effects on the binding of apoA-I or Delta(187-243) to the THP-1 cell surface. Overall, these results show that cholesterol efflux from cells such as fibroblasts does not require any specific sequence between residues 100 and 243 of apoA-I. In contrast, optimal cholesterol efflux in macrophages requires binding of the C-terminal domain of apoA-I to a cell surface-binding site and the subsequent translocation of intracellular cholesterol to an efflux-competent pool.  相似文献   

14.
To explore the functional interactions between apoA-I and ABCA1, we correlated the cross-linking properties of several apoA-I mutants with their ability to promote cholesterol efflux. In a competitive cross-linking assay, amino-terminal deletion and double amino- and carboxy-terminal deletion mutants of apoA-I competed effectively the cross-linking of WT (125)I-apoA-I to ABCA1, while the carboxy-terminal deletion mutant apoA-I[Delta(220-243)] competed poorly. Direct cross-linking of WT apoA-I, amino-terminal, and double deletion mutants of apoA-I to ABCA1 showed similar apparent K(d) values (49-74 nM), whereas the apparent K(d) values of the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] were increased 3-fold. Analysis of several internal deletions and point mutants of apoA-I showed that apoA-I[Delta(61-78)], apoA-I[Delta(89-99)], apoA-I[Delta(136-143)], apoA-I[Delta(144-165)], apoA-I[D102A/D103A], apoA-I[E125K/E128K/K133E/E139K], apoA-I[L141R], apoA-I[R160V/H162A], and WT apoA-I had similar ABCA1-mediated lipid efflux, and all competed efficiently the cross-linking of WT (125)I-apoA-I to ABCA1. WT apoA-I and ABCA1 could be cross-linked with a 3 A cross-linker. The WT apoA-I, amino, carboxy and double deletion mutants of apoA-I showed differences in the cross-linking to WT ABCA1 and the mutant ABCA1[W590S]. The findings are consistent with a direct association of different combinations of apoA-I helices with a complementary ABCA1 domain. Mutations that alter ABCA1/apoA-I association affect cholesterol efflux and inhibit biogenesis of HDL.  相似文献   

15.
16.
EBNA-1 is essential for replication of the latent episomal form of the Epstein-Barr virus genome and is involved in regulation of viral latency promoters. EBNA-1 activity is mediated through direct DNA binding. The DNA binding and dimerization functions of EBNA-1 have previously been located to a carboxy-terminal domain, amino acids (aa) 459 to 607. To identify and define the subdomains for these two functions, we created an extensive series of deletions and point mutations in an EBNA-1 (aa 408 to 641) background. The ability of the EBNA-1 mutants to heterodimerize with a wild-type EBNA-1 (aa 459 to 641) Immunoprecipitation assays with a monoclonal antibody, EBNA.OT1x, that recognizes EBNA-1 (aa 408 to 641) but not EBNA-1 (aa 459 to 641). These experiments revealed that mutations affecting dimerization occurred over two separate regions, aa 501 to 532 and aa 554 to 598. DNA binding was tested in mobility shift assays against a panel of oligonucleotide-binding sites. Dimerization was a prerequisite for DNA binding. The DNA recognition domain was localized to a separate region, aa 459 to 487, upstream of the dimerization domain. EBNA-1 variants carrying substitutions at aa 467 and 468 and at aa 477 gave a pattern of binding to mutant oligonucleotide probes that implicates these particular amino acids in DNA recognition. EBNA-1 appears to utilize novel mechanisms for both DNA recognition and dimerization since neither domain conforms to previously described structural motifs.  相似文献   

17.
A collection of influenza virus PB2 mutant genes was prepared, including N-terminal deletions, C-terminal deletions, and single-amino-acid insertions. These mutant genes, driven by a T7 promoter, were expressed by transfection into COS-1 cells infected with a vaccinia virus encoding T7 RNA polymerase. Mutant proteins accumulated to levels similar to that of wild-type PB2. Immunofluorescence analyses showed that the C-terminal region of the protein is essential for nuclear transport and that internal sequences affect nuclear localization, confirming previous results (J. Mukaijawa and D. P. Nayak, J. Virol. 65:245-253, 1991). The biological activity of these mutants was tested by determining their capacity to (i) reconstitute RNA polymerase activity in vivo by cotransfection with proteins NP, PB1, and PA and a virion-like RNA encoding the cat gene into vaccinia virus T7-infected COS-1 cells and (ii) complete with the wild-type PB2 activity. In addition, when tested at different temperatures in vivo, two mutant PB2 proteins showed a temperature-sensitive phenotype. The lack of interference shown by some N-terminal deletion mutants and the complete interference obtained with a C-terminal deletion mutant encoding only 124 amino acids indicated that this protein domain is responsible for interaction with another component of the polymerase, probably PB1. To further characterize the mutants, their ability to induce in vitro synthesis of viral cRNA or mRNA was tested by using ApG or beta-globin mRNA as a primer. One of the mutants, 1299, containing an isoleucine insertion at position 299, was able to induce cRNA and mRNA synthesis in ApG-primed reactions but required a higher beta-globin mRNA concentration than wild-type PB2 for detection of in vitro synthesis. This result suggested that mutant I299 has diminished cap-binding activity.  相似文献   

18.
The roles of the capsid protein (CP) and the CP coding sequence of tobacco etch potyvirus (TEV) in genome amplification were analyzed. A series of frameshift-stop codon mutations that interrupted translation of the CP coding sequence at various positions were introduced into the TEV genome. A series of 3' deletion mutants that lacked the CP coding sequence beyond each of the frameshift-stop codon mutations were also produced. In addition, a series of 5' CP deletion mutants were generated. Amplification of genomes containing either frameshift-stop codon insertions after codons 1, 59, 103, and 138 or genomes containing the corresponding 3' deletions of the CP coding sequence was reduced by 100- to 1,000-fold relative to that of the parental genome in inoculated protoplasts. In contrast, a mutant containing a frameshift-stop codon after CP position 189 was amplified to 27% of the level of the parental virus, but the corresponding 3' deletion mutant lacking codons 190 to 261 was nonviable. Deletion mutants lacking CP codons 2 to 100, 2 to 150, 2 to 189, and 2 to 210 were amplified relatively efficiently in protoplasts, but a deletion mutant lacking codons 2 to 230 was nonviable. None of the amplification-defective frameshift-stop codon or deletion mutants was rescued in transgenic cells expressing TEV CP, although the transgenic CP was able to rescue intercellular movement defects of replication-competent CP mutants. Coupled with previous results, these data led to the conclusions that (i) TEV genome amplification requires translation to a position between CP codons 138 and 189 but does not require the CP product and (ii) the TEV CP coding sequence contains a cis-active RNA element between codons 211 and 246. The implications of these findings on mechanisms of RNA replication and genome evolution are discussed.  相似文献   

19.
A new strategy to improve a cauliflower mosaic virus vector   总被引:2,自引:0,他引:2  
H Hirochika  K Hayashi 《Gene》1991,105(2):239-241
Co-infection of plants with non-overlapping deletion mutants of cauliflower mosaic virus usually leads to the production of the wild-type virus. To prevent this, a pair of mutants with overlapping deletions was constructed. In infected plants both mutant DNAs were stably maintained. Such mutants with overlapping deletions will be used as a vector to overcome the size limitation of genes to be cloned.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号