首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Details are given concerning the phenylketonuria (PKU) mutations R408Q and F299C. Both mutations were identified among 47 PKU patients, derived from the Norwegian PKU registry. A novel PKU mutation (R408Q) was identified, by single-strand conformation polymorphism analysis, on six out of eight mutant haplotype 12 chromosomes and on none of the other PKU chromosomes. The F299C mutation occurred exclusively on mutant haplotype 8, and was the only mutation associated with this haplotype (on six chromosomes). One patient homozygous for each mutation was found. The patient homozygous for F299C manifested severe PKU, whereas the R408Q homozygote exhibited a mild PKU variant. Pedigree analysis of these families has not, so far, revealed consanguinity. Information on the place of birth of the relevant grandparents of the PKU patients with these mutations suggests that each of these mutations in Norway has originated from a common gene source.  相似文献   

2.
The Hennekam lymphangiectasia–lymphedema syndrome is a genetically heterogeneous disorder. It can be caused by mutations in CCBE1 which are found in approximately 25 % of cases. We used homozygosity mapping and whole-exome sequencing in the original HS family with multiple affected individuals in whom no CCBE1 mutation had been detected, and identified a homozygous mutation in the FAT4 gene. Subsequent targeted mutation analysis of FAT4 in a cohort of 24 CCBE1 mutation-negative Hennekam syndrome patients identified homozygous or compound heterozygous mutations in four additional families. Mutations in FAT4 have been previously associated with Van Maldergem syndrome. Detailed clinical comparison between van Maldergem syndrome and Hennekam syndrome patients shows that there is a substantial overlap in phenotype, especially in facial appearance. We conclude that Hennekam syndrome can be caused by mutations in FAT4 and be allelic to Van Maldergem syndrome.  相似文献   

3.
A family affected with autosomal dominant retinitis pigmentosa (RP) is presented. Two clinically affected patients (mother and daughter) were heterozygous for the same novel missense mutation (Val137Met) of the rhodopsin gene (RHO). Both heterozygous and homozygous cases were observed among their few symptomatic relatives. Wide clinical variation was exhibited among the individuals with mutations in this family. None of the controls showed this change in RHO, nor has it been previously reported in other RP families. No other RHO mutation was observed. Additional genetic or environmental factors could play a role in modulating the penetrance and clinical expression of this RHO mutation. Received: 20 February 1995 / Revised: 1 September 1995, 27 November 1995, 3 February 1996  相似文献   

4.
Fanconi-Bickel syndrome is characterized by hepato-renal glycogenosis with severe renal tubular dysfunction and rickets. It has recently been found to be associated with GLUT2 mutations in three families. In another family, low activities of liver phosphorylase kinase (Phk) have been observed, suggesting that Fanconi-Bickel syndrome might be genetically heterogeneous. We have analyzed this family for mutations in the GLUT2 gene and in the three Phk subunit genes that can cause liver glycogenosis (PHKA2, PHKB, and PHKG2). The coding sequences of all three Phk genes are normal but we have identified a homozygous missense mutation (Pro417Leu) in GLUT2. The affected proline residue is completely conserved in all mammalian glucose permease isoforms and even in bacterial sugar transporters and is believed to be critical for the passage of glucose through the permease. Seven affected individuals from different branches of the same large consanguineous sibship all are homozygous for this mutation. These findings indicate that there is no specific subtype of genetic Phk deficiency giving rise to hepato-renal glycogenosis. Rather, they provide further evidence that Fanconi-Bickel syndrome is caused by GLUT2 mutations. The low Phk activity is probably a secondary phenomenon that contributes to the deposition of glycogen in response to the intracellular glucose retention caused by GLUT2 deficiency.  相似文献   

5.
The DFNB79 locus harbors TPRN mutations in which have been reported in a few families with deafness. Four frameshift mutations in TPRN have been described to cause severe or severe-to-profound hearing loss in Moroccan and Pakistani families, and a single frameshift mutation was associated with progressive hearing loss in deaf individuals in a Dutch family. We identified a Pakistani family in which the affected individuals were homozygous for a pathogenic mutation, c.42_52del11, in TPRN (p.G15Afs150X). In contrast to the previously reported individuals affected by the same mutation, hearing loss is likely to be progressive in this family. Thus the same mutation of TPRN can be associated with different thresholds of hearing as well as differences in the stability of the phenotype.  相似文献   

6.
Most autosomal genetic causes of childhood-onset hypogammaglobulinemia are currently not well understood. Most affected individuals are simplex cases, but both autosomal-dominant and autosomal-recessive inheritance have been described. We performed genetic linkage analysis in consanguineous families affected by hypogammaglobulinemia. Four consanguineous families with childhood-onset humoral immune deficiency and features of autoimmunity shared genotype evidence for a linkage interval on chromosome 4q. Sequencing of positional candidate genes revealed that in each family, affected individuals had a distinct homozygous mutation in LRBA (lipopolysaccharide responsive beige-like anchor protein). All LRBA mutations segregated with the disease because homozygous individuals showed hypogammaglobulinemia and autoimmunity, whereas heterozygous individuals were healthy. These mutations were absent in healthy controls. Individuals with homozygous LRBA mutations had no LRBA, had disturbed B cell development, defective in vitro B cell activation, plasmablast formation, and immunoglobulin secretion, and had low proliferative responses. We conclude that mutations in LRBA cause an immune deficiency characterized by defects in B cell activation and autophagy and by susceptibility to apoptosis, all of which are associated with a clinical phenotype of hypogammaglobulinemia and autoimmunity.  相似文献   

7.
Hereditary non-polyposis colorectal cancer (HNPCC) is a common hereditary cancer. Genetic testing is complicated by the multiple DNA mismatch repair genes that underlie the disorder. Many suspected HNPCC families have no germ-line mutation identified. We reassessed an unusual family that appeared to have 2 individuals homozygous for a germline mutation within exon 1 of the hMLH1 gene. A few rare individuals with two inherited mutations in one of the mismatch repair genes have been reported and appear to have a distinct clinical appearance. However, there were no clinical features in the family discussed here that were consistent with constitutive lack of hMLH1. Redesigning the intronic primers for exon 1 identified a common polymorphism located within the original intronic primer site. The polymorphism prevented amplification of the wild-type allele, giving the erroneous appearance of homozygous inheritance of the mutated allele. Likewise, common intronic polymorphisms, if located within primer sequences on the chromosome harboring the HNPCC germ-line mutation could restrict amplification to only the wild-type allele, which may contribute significantly to the low success rate of identifying mutations in HNPCC families.  相似文献   

8.
9.
Deafness is a heterogeneous disorder showing different patterns of inheritance and involving a multitude of different genes. Mutations in the GJB2 gene encoding connexin 26 (Cx26) protein are a major cause for non-syndromic autosomal recessive and sporadic deafness. Among these mutations, the c.35delG deletion is the most common mutation for sensorineural deafness. One hundred sixteen persons from fifty-eight families were tested by the method based on the principle of PCR-mediated-site-directed mutagenesis (PSDM), followed by a Bsl1 digestion. Mutation c.35delG was diagnosed in sixteen families (11 homozygotes and 5 heterozygotes). The low allelic frequency (17.24%) and low ratio of individuals homozygous (13.8%) and heterozygous (6.9%) for the c.35delG mutation suggest that there are other mutations in the GJB2 gene or other genes responsible for deafness in the Algerian population. This study reports a significant association (P=0.003) between first cousin consanguinity and non-syndromic prelingual deafness.  相似文献   

10.
Crigler-Najjar syndrome type I (CN I) is a rare autosomal recessive disorder due to hepatic dysfunction of uridine diphospho-glucuronosyltransferase (UGT) activity toward bilirubin. Complete inactivation of this enzyme causing CN I lead to accumulation of unconjugated bilirubin in serum and bile. Here we report the results of the molecular characterization of the uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) gene in a consanguineous family of Slovak Roms and an unrelated non-Romany family with CN I. Sequence analysis of UGT1A1 gene in all four Romany patients showed mutation in exon 4, a deletion of an A at codon 407 (1220delA), not yet described in homozygous status. All analysed patients were homozygous for 1220delA mutation and their 3 healthy sibs were heterozygous. The non-Romany patient was a compound heterozygote for two different deletions, 1220delA and 717-718delAG at codon 239. In the family of his cousin a son was born affected with CN I, who was homozygote for 717-718delAG mutation. His other niece affected with CN II was heterozygote for mutation 717-718delAG but homozygote for TA insertion and enhancer substitution T-3279G. Haplotype analysis suggests that the 1220delA mutation is identical by descent in both families, though they originate from two ethnically different populations (Slovaks vs. Roms).  相似文献   

11.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases caused by progressive degeneration of the photoreceptor cells. Using autozygosity mapping, we identified two families, each with three affected siblings sharing large overlapping homozygous regions that harbored the IMPG2 gene on chromosome 3. Sequence analysis of IMPG2 in the two index cases revealed homozygous mutations cosegregating with the disease in the respective families: three affected siblings of Iraqi Jewish ancestry displayed a nonsense mutation, and a Dutch family displayed a 1.8 kb genomic deletion that removes exon 9 and results in the absence of seven amino acids in a conserved SEA domain of the IMPG2 protein. Transient transfection of COS-1 cells showed that a construct expressing the wild-type SEA domain is properly targeted to the plasma membrane, whereas the mutant lacking the seven amino acids appears to be retained in the endoplasmic reticulum. Mutation analysis in ten additional index cases that were of Dutch, Israeli, Italian, and Pakistani origin and had homozygous regions encompassing IMPG2 revealed five additional mutations; four nonsense mutations and one missense mutation affecting a highly conserved phenylalanine residue. Most patients with IMPG2 mutations showed an early-onset form of RP with progressive visual-field loss and deterioration of visual acuity. The patient with the missense mutation, however, was diagnosed with maculopathy. The IMPG2 gene encodes the interphotoreceptor matrix proteoglycan IMPG2, which is a constituent of the interphotoreceptor matrix. Our data therefore show that mutations in a structural component of the interphotoreceptor matrix can cause arRP.  相似文献   

12.
13.
Mutations in the human keratin 9 gene have recently been shown to be involved in the etiology of palmoplantar keratoderma (PPK). We have investigated eleven unrelated German kindreds with the epidermolytic variant of PPK (EPPK) for mutations in the keratin 9 gene. We have identified two novel mutations, M156V and Q171P, both in the coil 1A segment of keratin 9. Mutation M156V was detected in two unrelated patients with EPPK, and mutation Q171P was shown to cosegregate with the disease in a large four-generation family. These findings confirm the functional importance of coil 1A integrity for heterodimerisation in keratins and for intermediate filament assembly. Our results provide further evidence for mutational heterogeneity in EPPK, and for the involvement of keratins in diseases of hyperkeratinisation and epidermolysis.  相似文献   

14.
Variants in the head and tail domains of the MYO7A gene, encoding myosin VIIA, cause Usher syndrome type 1B (USH1B) and nonsyndromic deafness (DFNB2, DFNA11). In order to identify the genetic defect(s) underling profound deafness in two consanguineous Arab families living in UAE, we have sequenced a panel of 19 genes involved in Usher syndrome and nonsyndromic deafness in the index cases of the two families. This analysis revealed a novel homozygous insertion of AG (c.1952_1953insAG/p.C652fsX11) in exon 17 of the MYO7A gene in an Iraqi family, and a homozygous point mutation (c.5660C>T/p.P1887L) in exon 41 affecting the same gene in a large Palestinian family. Moreover, some individuals from the Palestinian family also harbored a novel heterozygous truncating variant (c.1267C>T/p.R423X) in the DFNB31 gene, which is involved in autosomal recessive nonsyndromic deafness type DFNB31 and Usher syndrome type II. Assuming an autosomal recessive mode of inheritance in the two inbred families, we conclude that the homozygous variants in the MYO7A gene are the disease-causing mutations in these families. Furthermore, given the absence of retinal disease in all affected patients examined, particularly a 28 year old patient, suggests that at least one family may segregate a DFNB2 presentation rather than USH1B. This finding further supports the premise that the MYO7A gene is responsible for two distinct diseases and gives evidence that the p.P1887L mutation in a homozygous state may be responsible for nonsyndromic hearing loss.  相似文献   

15.
Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and susceptibility to fractures after minimal trauma. After mutations in all known OI genes had been excluded by Sanger sequencing, we applied next-generation sequencing to analyze the exome of a single individual who has a severe form of the disease and whose parents are second cousins. A total of 26,922 variations from the human reference genome sequence were subjected to several filtering steps. In addition, we extracted the genotypes of all dbSNP130-annotated SNPs from the exome sequencing data and used these 299,494 genotypes as markers for the genome-wide identification of homozygous regions. A single homozygous truncating mutation, affecting SERPINF1 on chromosome 17p13.3, that was embedded into a homozygous stretch of 2.99 Mb remained. The mutation was also homozygous in the affected brother of the index patient. Subsequently, we identified homozygosity for two different truncating SERPINF1 mutations in two unrelated patients with OI and parental consanguinity. All four individuals with SERPINF1 mutations have severe OI. Fractures of long bones and severe vertebral compression fractures with resulting deformities were observed as early as the first year of life in these individuals. Collagen analyses with cultured dermal fibroblasts displayed no evidence for impaired collagen folding, posttranslational modification, or secretion. SERPINF1 encodes pigment epithelium-derived factor (PEDF), a secreted glycoprotein of the serpin superfamily. PEDF is a multifunctional protein and one of the strongest inhibitors of angiogenesis currently known in humans. Our data provide genetic evidence for PEDF involvement in human bone homeostasis.  相似文献   

16.
The RNASEL gene (2',5'-oligoisoadenylate-synthetase dependent) encodes a ribonuclease that mediates the antiviral and apoptotic activities of interferons. The RNASEL gene maps to the hereditary-prostate-cancer (HPC)-predisposition locus at 1q24-q25 (HPC1) and was recently shown to harbor truncating mutations in two families with linkage to HPC1. Here, we screened for RNASEL germline mutations in 66 Finnish patients with HPC, and we determined the frequency of the changes in the index patients from 116 families with HPC, in 492 patients with unselected prostate cancer (PRCA), in 223 patients with benign prostatic hyperplasia (BPH), and in 566 controls. A truncating mutation, E265X, was found in 5 (4.3%) of the 116 patients from families with HPC. This was significantly higher (odds ratio [OR] =4.56; P=.04) than the frequency of E265X in controls (1.8%). The highest mutation frequency (9.5%) was found in patients from families with four or more affected members. Possible segregation was detected only in a single family. However, the median age at disease onset for E265X carriers was 11 years less than that for noncarriers in the same families. In addition, of the four missense variants found, R462Q showed an association with HPC (OR=1.96; P=.07). None of the variants showed any differences between controls and either patients with BPH or patients with PRCA. We conclude that, although RNASEL mutations do not explain disease segregation in Finnish families with HPC, the variants are enriched in families with HPC that include more than two affected members and may also be associated with the age at disease onset. This suggests a possible modifying role in cancer predisposition. The impact that the RNASEL sequence variants have on PRCA burden at the population level seems small but deserves further study.  相似文献   

17.
Several mutations in the rhodopsin gene in patients affected by autosomal dominant retinitis pigmentosa (ADRP) have recently been described. We report four new rhodopsin mutations in ADRP families, initially identified as hetero-duplexed PCR fragments on hydrolink gels. One is an in-frame 12-bp deletion of codons 68 to 71. The other three are point mutations involving codons 190, 211, and 296. Each alters the amino acid encoded. The codon 190 mutation has been detected in 2 from a panel of 34 ADRP families, while the remaining mutations were seen in single families. This suggests that, consistent with a dominant condition, no single mutation will account for a large fraction of ADRP cases. The base substitution in codon 296 alters the lysine residue that functions as the attachment site for 11-cis-retinal, mutating it to glutamic acid. This mutation occurs in a family with an unusually severe phenotype, resulting in early onset of disease and cataracts in the third or fourth decade of life. This result demonstrates a correlation between the location of the mutation and the severity of phenotype in rhodopsin RP.  相似文献   

18.
In some Palestinian communities, the prevalence of inherited prelingual deafness is among the highest in the world. As an initial step towards understanding the genetic causes of hearing loss in the Palestinian population, 48 independently ascertained probands with non-syndromic hearing loss were evaluated for mutations in the connexin 26 gene. Of the 48 deaf probands, 11 (23%) were homozygous or compound heterozygous for mutations in GJB2. Five different mutations were identified: ivs1(+1) G-->A, 35delG, 167delT, T229C, 235delC. Nine deaf probands were homozygous and only two compound heterozygous. Among 400 hearing Palestinian controls, one carrier was observed (for 167delT). We show that GJB2 ivs1(+1) G-->A disrupts splicing, yielding no detectable message. Linkage disequilibrium analysis suggests, in the Palestinian and Israeli populations, a common origin of the 35delG mutation, which is worldwide, and of 167delT, which appears specific to Israeli Ashkenazi and Palestinian populations. A high prevalence of deafness, high frequency of homozygosity rather than compound heterozygosity among deaf, and low mutation carrier frequency together reflect the high levels of consanguinity of many extended Palestinian families. Some of the 25 families with multiple cases of inherited prelingual deafness and wildtype GJB2 sequences may represent as-yet-unknown genes for inherited hearing loss.  相似文献   

19.
Familial hemiplegic migraine (HM) is an autosomal dominant migraine with aura. In 20% of HM families, HM is associated with a mild permanent cerebellar ataxia (PCA). The CACNA1A gene encoding the alpha1A subunit of P/Q-type voltage-gated calcium channels is involved in 50% of unselected HM families and in all families with HM/PCA. Four CACNA1A missense mutations have been identified in HM: two in pure HM and two in HM/PCA. Different CACNA1A mutations have been identified in other autosomal dominant conditions: mutations leading to a truncated protein in episodic ataxia type 2 (EA2), small expansions of a CAG trinucleotide in spinocerebellar ataxia type 6 and also in three families with EA2 features, and, finally, a missense mutation in a single family suffering from episodic ataxia and severe progressive PCA. We screened 16 families and 3 nonfamilial case patients affected by HM/PCA for specific CACNA1A mutations and found nine families and one nonfamilial case with the same T666M mutation, one new mutation (D715E) in one family, and no CAG repeat expansion. Both T666M and D715E substitutions were absent in 12 probands belonging to pure HM families whose disease appears to be linked to CACNA1A. Finally, haplotyping with neighboring markers suggested that T666M arose through recurrent mutational events. These data could indicate that the PCA observed in 20% of HM families results from specific pathophysiologic mechanisms.  相似文献   

20.
Petry F  Loos M 《Immunogenetics》2005,57(8):566-571
Hereditary complete deficiency of complement component C1q is a rare genetic disorder that is associated with severe recurrent infections and a high prevalence of lupus-erythematosus-like symptoms. In the past, several single nucleotide polymorphisms have been identified in all three genes coding for the C1q A, B, and C chains. These point mutations which either lead to termination codons, frameshift, or amino acid exchanges were thought to be responsible for these defects as no other nonsense or missense mutations were found. As a result of the aberrations, either a nonfunctional C1q antigen is present or no C1q protein is detectable in the patients' sera. Screening 46 individuals from seven families with different forms of C1q deficiencies identified a homologous silent mutation at position Gly70 (GGG>GGA) of the C1q A gene of all 11 C1q-deficient patients. A high number of family members that were heterozygous for the coding mutations carried the silent mutation in the homozygous (18%) or heterozygous (36%) state. In addition to the Gly70 mutation in the A gene, another homozygous silent mutation (C gene at position Pro14, CCT>CCC) was detected in all C1q-deficient patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号