首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rat-1 cells are used in many studies on transformation, cell cycle, and apoptosis. Whereas UV treatment of Rat-1 cells results in apoptosis, X-ray treatment does not induce either apoptosis or a cell cycle block. X-ray treatment of Rat-1 cells results in both an increase of p53 protein and expression of the p53-inducible gene MDM2 but not the protein or mRNA of the p53-inducible p21(WAF1/CIP1) gene, which in other cells plays an important role in p53-mediated cell cycle block. The lack of p21(WAF1/CIP1) expression appears to be the result of hypermethylation of the p21(WAF1/CIP1) promoter region, as p21(WAF1/CIP1) protein expression could be induced by growth of Rat-1 cells in the presence of 5-aza-2-deoxycytidine. Furthermore, sequence analysis of bisulfite-treated DNA demonstrated extensive methylation of cytosine residues in CpG dinucleotides in a CpG-rich island in the promoter region of the p21(WAF1/CIP1) gene. Stable X-ray-induced p53-dependent p21(WAF1/CIP1) expression and cell cycle block were restored to a Rat-1 clone after transfection with a P1 artificial chromosome (PAC) DNA clone containing a rat genomic copy of the p21(WAF1/CIP1) gene. The absence of expression of the p21(WAF1/CIP1) gene may contribute to the suitability of Rat-1 cells for transformation, cell cycle, and apoptosis studies.  相似文献   

2.
3.
UHRF2(ubiquitin like with PHD and ring finger domains 2)是新近发现的具有多个结构域的核蛋白,在细胞周期调控和表观遗传学中发挥重要作用.近期研究提示,UHRF2是肿瘤抑制蛋白p53的1个E3连接酶,在体内外能与p53相互结合并促进其泛素化,过表达UHRF2能使细胞周期停滞于G1期.然而,UHRF2介导的G1期阻滞及其与p53联系尚不清楚.通过共转染UHRF2质粒及p53特异性小干扰RNA(siRNAs)到HEK293细胞构建细胞模型,探索UHRF2引起细胞周期停滞与p53之间的关系.结果显示,UHRF2能促进HEK293细胞中p53的稳定,从而引起p21 (CIP1/WAF1)基因表达,并使细胞周期停滞于G1期;但在siRNA抑制p53的表达后p21(CIP1/WAF1)表达降低,UHRF2引起的细胞周期阻滞消除.研究结果提示,UHRF2可通过稳定p53,上调p21的表达,从而介导细胞周期阻滞于G1期;同时UHRF2可能参与细胞周期调控及DNA损伤反应(DNA damage response, DDR).UHRF2稳定p53的具体分子机制及其在DDR中的作用有待进一步研究证明.  相似文献   

4.
Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27(Kip1) in the absence of p53. This study found that MRPL41 mediates the p21(WAF1/CIP1)-mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21(WAF1/CIP1) and p27(Kip1) levels under the growth inhibitory conditions.  相似文献   

5.
DNA损伤生物学反应中ATM对p21~(WAF1/CIP1)蛋白的直接磷酸化   总被引:3,自引:0,他引:3  
毛细血管扩张性共济失调症突变蛋白 (mutatedinataxiatelangiectasia ,ATM)是直接感受DNA双链断裂损伤并起始诸多DNA损伤信号反应通路的主开关分子 .已有研究发现 ,DNA损伤生物学反应中 ,ATM可通过磷酸化活化p5 3,继而转录活化细胞周期检查点蛋白p2 1WAF1 CIP1的表达 ,而对于ATM是否直接参与p2 1WAF1 CIP1的早期活化迄今尚无实验证明 .通过免疫共沉淀反应 ,检测到细胞电离辐射 (ionizingradiation ,IR)反应早期ATM与p2 1WAF1 CIP1蛋白存在相互作用 .将p2 1WAF1 CIP1蛋白编码基因全长克隆入原核表达载体pGEX4T 2 ,经诱导表达及亲和层析纯化获取GST p2 1融合蛋白作为磷酸化底物 .体外磷酸化实验检测证明 ,IR活化的ATM具磷酸化p2 1WAF1 CIP1蛋白的功能 ,并且此磷酸化功能可被PI3K家族特异性抑制剂Wortmannin所抑制 .结果揭示了IR后ATM可通过直接磷酸化p2 1WAF1 CIP1蛋白 ,在IR致DNA损伤生物学反应早期调控p2 1WAF1 CIP1蛋白的快速活化过程  相似文献   

6.
目的:构建p21WAF1/CIP1基因小干扰RNA(siRNA)的真核表达载体,观察其对p21WAF1/CIP1表达的影响和细胞周期的变化。方法:合成了针对p21WAF1/CIP1基因的siRNA,将其克隆到siRNA表达载体pSliencer2.1-U6neo上,将重组质粒和带FLAG标签的p21WAF1/CIP1共转染293T人胚肾细胞,通过Westernblot检验RNA干扰(RNAi)敲低外源p21WAF1/CIP1的效果;将重组质粒单独转染293T人胚肾细胞,利用p21WAF1/CIP1抗体检测RNAi敲低内源p21WAF1/CIP1的效果;利用流式细胞仪检测敲低后细胞周期的变化。结果:测序证明构建了p21WAF1/CIP1siRNA真核表达载体;Westernblot和流式细胞分析证明,构建的siRNA能有效降低p21WAF1/CIP1基因的表达,并且使G1期细胞数减少14.03%,S期细胞增多13.45%。结论:构建了p21WAF1/CIP1siRNA的真核表达载体,该siRNA能有效抑制p21WAF1/CIP1基因的表达并部分解除了G1期阻滞。  相似文献   

7.
8.
9.
We have studied the ability of F9 teratocarcinoma cells to arrest in G1/S and G2/M checkpoints following gamma-irradiation. Wild-type p53 protein is rapidly accumulated in F9 cells after gamma-irradiation, however this is not followed by G1/S arrest; there is just a reversible delay of the cell cycle in G2/M. In order to elucidate the reasons of the lack of G1/S arrest in F9 cells we investigated the levels of regulatory cell cycle proteins: G1-cyclins, cyclin dependent kinases and kinase inhibitor p21WAF1/CIP1. We have shown that in spite of p53-dependent activation of p21WAF1/CIP1 promoter, p21WAF1/CIP1 protein is not revealed by different polyclonal and monoclonal antibodies, either by immunoblotting or by immunofluorescent staining. However, when cells are treated with specific proteasome inhibitor lactacystin, p21WAF1/CIP1 protein is revealed. We therefore suggest that p21WAF1/CIP1 protein is subjected to proteasome degradation in F9 cells and probably the lack of G1/S arrest after gamma-irradiation is due to this degradation. Thus, it is the combination of functionally active p53 with low level expression of p21WAF1/CIP1 that causes a short delay of the cell cycle progression in G2/M, rather than the G1-arrest after gamma-irradiation of F9 cells.  相似文献   

10.
11.
p21WAF1/CIP1 is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21?/? HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53?/? cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1α and TFAM and AMPK activity were also elevated in p21?/? cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1α axis. However, the increase in mitochondrial biogenesis in p21?/? cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21?/? cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.  相似文献   

12.
13.
Estrogen rapidly induces expression of the proto-oncogene c-myc. c-Myc is required for estrogen-stimulated proliferation of breast cancer cells, and deregulated c-Myc expression has been implicated in antiestrogen resistance. In this report, we investigate the mechanism(s) by which c-Myc mediates estrogen-stimulated proliferation and contributes to cell cycle progression in the presence of antiestrogen. The MCF-7 cell line is a model of estrogen-dependent, antiestrogen-sensitive human breast cancer. Using stable MCF-7 derivatives with inducible c-Myc expression, we demonstrated that in antiestrogen-treated cells, the elevated mRNA and protein levels of p21(WAF1/CIP1), a cell cycle inhibitor, decreased upon either c-Myc induction or estrogen treatment. Expression of p21 blocked c-Myc-mediated cell cycle progression in the presence of antiestrogen, suggesting that the decrease in p21 is necessary for this process. Using RNA interference to suppress c-Myc expression, we further established that c-Myc is required for estrogen-mediated decreases in p21(WAF1/CIP1). Finally, we observed that neither c-Myc nor p21(WAF1/CIP1) is regulated by estrogen or antiestrogen in an antiestrogen-resistant MCF-7 derivative. The p21 levels in the antiestrogen-resistant cells increased when c-Myc expression was suppressed, suggesting that loss of p21 regulation was a consequence of constitutive c-Myc expression. Together, these studies implicate p21(WAF1/CIP1) as an important target of c-Myc in breast cancer cells and provide a link between estrogen, c-Myc, and the cell cycle machinery. They further suggest that aberrant c-Myc expression, which is frequently observed in human breast cancers, can contribute to antiestrogen resistance by altering p21(WAF1/CIP1) regulation.  相似文献   

14.
15.
Genotoxic stimuli, including anticancer drugs, induce apoptosis in cancer cells through increase of p53, p21WAF1/CIP1 , at least in part. Bcl-2 and Bax modify this pathway or directly regulated by p53. Here we studied Adriamycin (ADM)-induced apoptosis in four human bladder cancer cell lines in respect of p53, p21WAF1/CIP1 and Bcl-2 family proteins. After ADM, treatment bladder cancer cells underwent dose-dependent cell death with typical morphologic features of apoptosis. Among four cell lines RT4 with wt p53, low ratio of Bcl-2 to Bax and induction of p21WAF1/CIP1 after ADM treatment, was the most sensitive to induction of apoptosis. Thus, p53, p21WAF1/CIP1 , Bcl-2 and Bax status might determine susceptibility of bladder cancer cells to ADM induced apoptosis.  相似文献   

16.
17.
18.
B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号