首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitin-ligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.Key words: BRCT, DNA repair, peptide, radiation, RING, ubiquitylation  相似文献   

2.
BRCA1 accumulates in nuclear foci during S-phase and reassembles into DNA repair-associated foci after DNA damage, reflecting its role in genome maintenance. BRCA1 comprises a RING domain at the N terminus and a BRCT domain at the C terminus, through which it associates with DNA repair proteins. The key sequences that target BRCA1 to DNA damage-induced foci have not been identified. Here, we mapped the BRCA1 foci-targeting domains of yellow fluorescence protein (YFP)-tagged BRCA1 in MCF-7 breast cancer cells exposed to ionizing radiation (IR). Cancer mutations specific to the BRCT domain, but not the RING domain, abolished BRCA1 recruitment to IR-induced foci. The YFP-BRCT domain itself, however, localized poorly at IR-induced foci, and the RING domain and other sequences were negative. We discovered that only when the RING and BRCT domains were combined was foci targeting restored to levels observed for wild-type BRCA1. The RING-BRCT fusion co-localized at foci with the MDC1 DNA damage response factor and inhibited entry of endogenous BRCA1 into nuclear foci. Our results explain why exon 11-deficient BRCA1 splice variants are targeted to IR-induced foci even though they are incapable of repairing DNA damage. We propose that both RING and BRCT domains together target BRCA1 to large focal assemblies at DNA double-stranded breaks.  相似文献   

3.
Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.  相似文献   

4.
Thermal unfolding of human BRCA1 BRCT-domain variants   总被引:1,自引:0,他引:1  
Missense mutations at the BRCT domain of human BRCA1 protein have been associated with an elevated risk for hereditary breast/ovarian cancer. They have been shown to affect the binding site and they have also been proposed to affect domain stability, severely hampering the protein's tumor suppressor function. In order to assess the impact of various such mutations upon the stability and the function of the BRCT domain, heat-induced denaturation has been employed to study the thermal unfolding of variants M1775R and R1699W, which have been linked with the disease, as well as of V1833M, which has been reported for patients with a family history. Calorimetric and circular dichroism results reveal that in pH 9.0, 5 mM borate buffer, 200 mM NaCl, analogously to wild type BRCT, all three variants undergo partial thermal unfolding to a denatured state, which retains most of the native's structural characteristics. With respect to wild-type BRCT, the mutation M1775R induces the most severe effects especially upon the thermostability, while R1699W also has a strong impact. On the other hand, the thermal unfolding of variant V1833M is only moderately affected relative to wild-type BRCT. Moreover, isothermal titration calorimetric measurements reveal that contrary to M1775R and R1699W variants, V1833M binds to BACH1 and CtIP phosphopeptides.  相似文献   

5.
6.
7.
8.
9.
10.
The integrity of the carboxyl-terminal BRCT repeat region is critical for BRCA1 tumor suppressor function; however, the molecular details of how a number of clinically derived BRCT missense mutations affect BRCA1 function remain largely unknown. Here we assess the structural response of the BRCT tandem repeat domain to a well characterized, cancer-associated single amino acid substitution, Met-1775 --> Arg-1775. The structure of BRCT-M1775R reveals that the mutated side chain is extruded from the protein hydrophobic core, thereby altering the protein surface. Charge-charge repulsion, rearrangement of the hydrophobic core, and disruption of the native hydrogen bonding network at the interface between the two BRCT repeats contribute to the conformational instability of BRCT-M1775R. Destabilization and global unfolding of the mutated BRCT domain at physiological temperatures explain the pleiotropic molecular and genetic defects associated with the BRCA1-M1775R protein.  相似文献   

11.
The breast cancer tumor suppressor protein BRCA1 is involved in DNA repair and cell cycle control. Mutations at the two C‐terminal tandem (BRCT) repeats of BRCA1 detected in breast tumor patients were identified either to lower the stability of the BRCT domain and/or to disrupt the interaction of BRCT with phoshpopeptides. The aim of this study was to analyze five BRCT pathogenic mutations for their effect on structural integrity and protein stability. For this purpose, the five cancer‐associated BRCT mutants: V1696L, M1775K, M1783T, V1809F, and P1812A were cloned in suitable prokaryotic protein production vectors, and the recombinant proteins were purified in soluble and stable form for further biophysical studies. The biophysical analysis of the secondary structure and the thermodynamic stability of the wild‐type, wt, and the five mutants of the BRCT domain were performed by Circular Dichroism Spectroscopy (CD) and Differential Scanning Microcalorimetry (DSC), respectively. The binding capacity of the wt and mutant BRCT with (pBACH1/BRIP1) and pCtIP were measured by Isothermal Titration Calorimetry (ITC). The experimental results demonstrated that the five mutations of the BRCT domain: (i) affected the thermal unfolding temperature as well as the unfolding enthalpy of the domain, to a varying degree depending upon the induced destabilization and (ii) altered and/or abolished their affinity to synthetic pBACH1/BRIP1 and pCtIP phosphopeptides by affecting the structural integrity of the BRCT active sites. The presented experimental results are one step towards the elucidation of the effect of various missense mutations on the structure and function of BRCA1‐BRCT. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress.  相似文献   

13.
Varma AK  Brown RS  Birrane G  Ladias JA 《Biochemistry》2005,44(33):10941-10946
The breast and ovarian tumor suppressor BRCA1 has important functions in cell cycle checkpoint control and DNA repair. Two tandem BRCA1 C-terminal (BRCT) domains are essential for the tumor suppression activity of BRCA1 and interact in a phosphorylation-dependent manner with proteins involved in DNA damage-induced checkpoint control, including the DNA helicase BACH1 and the CtBP-interacting protein (CtIP). The crystal structure of the BRCA1 BRCT repeats bound to the PTRVSpSPVFGAT phosphopeptide corresponding to residues 322-333 of human CtIP was determined at 2.5 A resolution. The peptide binds to a cleft formed by the interface of the two BRCTs in a two-pronged manner, with phospho-Ser327 and Phe330 anchoring the peptide through extensive contacts with BRCA1 residues. Several hydrogen bonds and salt bridges that stabilize the BRCA1-BACH1 complex are missing in the BRCA1-CtIP interaction, offering a structural basis for the approximately 5-fold lower affinity of BRCA1 for CtIP compared to that of BACH1, as determined by isothermal titration calorimetry. Importantly, the side chain of Arg1775 in the cancer-associated BRCA1 mutation M1775R sterically clashes with the phenyl ring of CtIP Phe330, disrupting the BRCA1-CtIP interaction. These results provide new insights into the molecular mechanisms underlying the dynamic selection of target proteins involved in DNA repair and cell cycle control by BRCA1 and reveal how certain cancer-associated mutations affect these interactions.  相似文献   

14.
15.
BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5' UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001). Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene.  相似文献   

16.
Liu T  Chen H  Kim H  Huen MS  Chen J  Huang J 《DNA Repair》2012,11(2):131-138
BRCA1 carboxyl-terminal (BRCT) motifs are present in a number of proteins involved in DNA repair and/or DNA damage signaling pathways. The BRCT domain-containing protein BRCTx has been shown to interact physically with RAD18, an E3 ligase involved in postreplication repair and homologous recombination repair. However, the physiological relevance of the interaction between RAD18 and BRCTx is largely unknown. In this study, we showed that RAD18 interacts with BRCTx in a phosphorylation-dependent manner and that this interaction, mediated via highly conserved serine residues on the RAD18 C terminus, is required for BRCTx accumulation at DNA damage sites. Furthermore, we uncovered critical roles of the RAD18-BRCTx module in UV-induced DNA damage repair but not PCNA mono-ubiquitination or homologous recombination. Thus, our results suggest that RAD18 has an additional function in the surveillance of the UV-induced DNA damage response signal.  相似文献   

17.
18.
Coquelle N  Green R  Glover JN 《Biochemistry》2011,50(21):4579-4589
The BRCA1 BRCT domain binds pSer-x-x-Phe motifs in partner proteins to regulate the cellular response to DNA damage. Approximately 120 distinct missense variants have been identified in the BRCA1 BRCT through breast cancer screening, and several of these have been linked to an increased cancer risk. Here we probe the structures and peptide-binding activities of variants that affect the BRCA1 BRCT phosphopeptide-binding groove. The results obtained from the G1656D and T1700A variants illustrate the role of Ser1655 in pSer recognition. Mutations at Arg1699 (R1699W and R1699Q) significantly reduce peptide binding through loss of contacts to the main chain of the Phe(+3) residue and, in the case of R1699W, to a destabilization of the BRCT fold. The R1835P and E1836K variants do not dramatically reduce peptide binding, in spite of the fact that these mutations significantly alter the structure of the walls of the Phe(+3) pocket.  相似文献   

19.
The BRCT domain (BRCA1 C-terminus), first identified in the breast cancer suppressor protein BRCA1, is an evolutionarily conserved protein-protein interaction region of approximately 95 amino acids found in a large number of proteins involved in DNA repair, recombination and cell cycle control. Here we describe the first three-dimensional structure and fold of a BRCT domain determined by X-ray crystallography at 3.2 A resolution. The structure has been obtained from the C-terminal region of the human DNA repair protein XRCC1, and comprises a four-stranded parallel beta-sheet surrounded by three alpha-helices, which form an autonomously folded domain. The compact XRCC1 structure explains the observed sequence homology between different BRCT motifs and provides a framework for modelling other BRCT domains. Furthermore, the established structure of an XRCC1 BRCT homodimer suggests potential protein-protein interaction sites for the complementary BRCT domain in DNA ligase III, since these two domains form a stable heterodimeric complex. Based on the XRCC1 BRCT structure, we have constructed a model for the C-terminal BRCT domain of BRCA1, which frequently is mutated in familial breast and ovarian cancer. The model allows insights into the effects of such mutations on the fold of the BRCT domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号