首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABAB1-/- mice, which are devoid of functional GABAB receptors, consistently exhibit marked hyperlocomotion when exposed to a novel environment. Telemetry recordings now revealed that, in a familiar environment, GABAB1-/- mice display an altered pattern of circadian activity but no hyperlocomotion. This indicates that hyperlocomotion is only triggered when GABAB1-/- mice are aroused by novelty. In microdialysis experiments, GABAB1-/- mice exhibited a 2-fold increased extracellular level of dopamine in the striatum. Following D-amphetamine administration, GABAB1-/- mice released less dopamine than wild-type mice, indicative of a reduced cytoplasmic dopamine pool. The hyperdopaminergic state of GABAB1-/- mice is accompanied by molecular changes, including reduced levels of tyrosine hydroxylase mRNA, D1 receptor binding-sites and Ser40 phosphorylation of tyrosine hydroxylase. Tyrosine hydroxylase activity, tissue dopamine content and dopamine metabolism do not appear to be measurably altered. Pharmacological and electrophysiological experiments support that the hyperdopaminergic state of GABAB1-/- mice is not severe enough to inactivate dopamine D2 receptors and to disrupt D2-mediated feedback inhibition of tyrosine hydroxylase activity. The data support that loss of GABAB activity results in a sustained moderate hyperdopaminergic state, which is phenotypically revealed by contextual hyperlocomotor activity. Importantly, the presence of an inhibitory GABA tone on the dopaminergic system mediated by GABAB receptors provides an opportunity for therapeutic intervention.  相似文献   

2.
Recent investigations have shown that three major striatal-signaling pathways (protein kinase A/DARPP-32, Akt/glycogen synthase kinase 3, and ERK) are involved in the regulation of locomotor activity by the monoaminergic neurotransmitter dopamine. Here we used dopamine transporter knock-out mice to examine which particular changes in the regulation of these cell signaling mechanisms are associated with distinct behavioral responses to psychostimulants. In normal animals, amphetamine and methylphenidate increase extracellular levels of dopamine, leading to an enhancement of locomotor activity. However, in dopamine transporter knock-out mice that display a hyperactivity phenotype resulting from a persistent hyperdopaminergic state, these drugs antagonize hyperactivity. Under basal conditions, dopamine transporter knock-out mice show enhanced striatal DARPP-32 phosphorylation, activation of ERK, and inactivation of Akt as compared with wild-type littermates. However, administration of amphetamine or methylphenidate to these mice reveals that inhibition of ERK signaling is a common determinant for the ability of these drugs to antagonize hyperactivity. In contrast, psychostimulants activate ERK and induce hyperactivity in normal animals. In hyperactive mice psychostimulant-mediated behavioral inhibition and ERK regulation are also mimicked by the serotonergic drugs fluoxetine and 5-carboxamidotryptamine, thereby revealing the involvement of serotonin-dependent inhibition of striatal ERK signaling. Furthermore, direct inhibition of the ERK signaling cascade in vivo using the MEK inhibitor SL327 recapitulates the actions of psychostimulants in hyperactive mice and prevents the locomotor-enhancing effects of amphetamine in normal animals. These data suggest that the inhibitory action of psychostimulants on dopamine-dependent hyperactivity results from altered regulation of striatal ERK signaling. In addition, these results illustrate how altered homeostatic state of neurotransmission can influence in vivo signaling responses and biological actions of pharmacological agents used to manage psychiatric conditions such as Attention Deficit Hyperactivity Disorder (ADHD).  相似文献   

3.
Changes in medial prefrontal cortex (mPFC) dopamine receptor expression and in mPFC projections to the nucleus accumbens in adolescence suggest that there may be age differences in the regulation of drug‐related behavior by the mPFC. The age‐specific role of prelimbic D1 dopamine receptors on amphetamine‐induced locomotor activity was investigated. In experiment 1, rats aged postnatal day 30 (P30), P45, and P75, corresponding to early and late adolescence and adulthood, were given an injection of D1 and D2 antagonists into the prelimbic mPFC before a systemic injection of 1.5 mg/kg of amphetamine and locomotor activity was recorded. In experiment 2, effects of intra‐prelimbic injections of a D1 agonist and antagonist on locomotor activity produced by a lower dose (0.5 mg/kg) of amphetamine were investigated. D2 receptor antagonist did not alter amphetamine‐induced activity, whereas the D1 receptor antagonist reduced activity produced by 1.5 mg/kg of amphetamine more in P30 than in P45 and P75 rats. In addition, D1 agonist enhanced the locomotor activating effects of 0.5 mg/kg of amphetamine in adolescent rats and decreased activity in adult rats. These results suggest that insufficient activation of mPFC D1 receptors may underlie the reduced activity at the low dose of amphetamine in early adolescent compared to adult rats. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

4.
Cui Y  Jin J  Zhang X  Xu H  Yang L  Du D  Zeng Q  Tsien JZ  Yu H  Cao X 《PloS one》2011,6(5):e20312
Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.  相似文献   

5.
Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective.  相似文献   

6.
ABSTRACT: BACKGROUND: Fragile X syndrome (FXS) is caused by the absence of the mRNA-binding protein Fragile X mental retardation protein (FMRP), encoded by the Fmr1 gene. Overactive signaling by group 1 metabotropic glutamate receptor (Grp1 mGluR) could contribute to slowed synaptic development and other symptoms of FXS. Our previous study has identified that facilitation of synaptic long-term potentiation (LTP) by D1 receptor is impaired in Fmr1 knockout (KO) mice. However, the contribution of Grp1 mGluR to the facilitation of synaptic plasticity by D1 receptor stimulation in the prefrontal cortex has been less extensively studied. RESULTS: Here we demonstrated that DL-AP3, a Grp1 mGluR antagonist, rescued LTP facilitation by D1 receptor agonist SKF81297 in Fmr1KO mice. Grp1 mGluR inhibition restored the GluR1-subtype AMPA receptors surface insertion by D1 activation in the cultured Fmr1KO neurons. Simultaneous treatment of Grp1 mGluR antagonist with D1 agonist recovered the D1 receptor signaling by reversing the subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in the Fmr1KO neurons. Treatment of SKF81297 alone failed to increase the phosphorylation of NR2B-containing N-methyl D-aspartate receptors (NMDARs) at Tyr-1472 (p-NR2B-Tyr1472) in the cultures from KO mice. However, simultaneous treatment of DL-AP3 could rescue the level of p-NR2B-Tyr1472 by SKF81297 in the cultures from KO mice. Furthermore, behavioral tests indicated that simultaneous treatment of Grp1 mGluR antagonist with D1 agonist inhibited hyperactivity and improved the learning ability in the Fmr1KO mice. CONCLUSION: The findings demonstrate that mGluR1 inhibition is a useful strategy to recover D1 receptor signaling in the Fmr1KO mice, and combination of Grp1 mGluR antagonist and D1 agonist is a potential drug therapy for the FXS.  相似文献   

7.
NMDA receptor function is modulated by both G-protein-coupled receptors and receptor tyrosine kinases. In acutely isolated rat hippocampal neurons, direct activation of the platelet-derived growth factor (PDGF) receptor or transactivation of the PDGF receptor by D4 dopamine receptors inhibits NMDA-evoked currents in a phospholipase C (PLC)-dependent manner. We have investigated further the ability of D2-class dopamine receptors to modulate NMDA-evoked currents in isolated rat prefrontal cortex (PFC). We have demonstrated that, similar to isolated hippocampal neurons, the application of PDGF-BB or quinpirole to isolated PFC neurons induces a slow-onset and long-lasting inhibition of NMDA-evoked currents. However, in contrast to hippocampal neurons, the inhibition of NMDA-evoked currents by quinpirole in PFC neurons is dependent upon D2/3, rather than D4, dopamine receptors. In PFC slices, application of both PDGF-BB and quinpirole induced a phosphorylation of the PDGF receptor at the PLCgamma binding and activation site, Tyr1021. The PDGF receptor kinase inhibitor, tyrphostin A9, and the D2/3 dopamine receptor antagonist, raclopride, inhibited quinpirole-induced Tyr1021 phosphorylation. These finding suggest that quinpirole treatment inhibits NMDAR signaling via PDGF receptor transactivation in both the hippocampus and the PFC, and that the effects of quinpirole in these regions are mediated by D4 and D2/3 dopamine receptors, respectively.  相似文献   

8.
Wistar male rats were implanted with bipolar electrodes in the lateral hypothalamus to study self-stimulation reaction in the Skinner box. Simultaneously, the microcanules were implanted into the central nucleus of the amygdala to inject the drugs studied (1 microl in volume for each injection). The blockade of CRF receptors (astressin 1 microg) or sodium influx ionic currents (xycaine, or lidocain 1 microg) by means of intrastructural administration of drugs into the amygdala descreased self-stimulation reaction of the lateral hypothalamus in rats by 29-55%. The inhibition of D2 and D2 dopamine receptors in the amygdala with SCH23390 (1 microg) or sulpiride (1 microg), respectively. reduced self-stimulation too, but in less degree. On the background of blockade of CRF (astressin) and dopamine (sulpiride) receptors, as well as sodium influx ionic currents (lidocain) in the amygdala neurons, psychomotor stimulant amphetamine (1 mg/kg) and barbiturate sodium ethaminal (5 mg/kg) supported their psychoactivating effect on self-stimulation (+30-37%), but fentanyl (0.1 mg/kg) had got no effect. Fentanyl activated self-stimulation moderately only after blockade D1 dopamine receptors with SCH23390. After blockade of CRF receptors, leu-enkephaline strengthened its depressant effect on self-stimulation reaction (-89%). Therefore, if the modulating influence of the amygdala on the hypothalamus is diminished, the reinforcing effects of opiated (fentanyl) and opioids (leuencephaline) will block, but there will be no effect for psychomotor stimulant amphetamine and barbiturate sodium ethaminal.  相似文献   

9.
The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC). Recent behavioral data suggest that the endocannabinoid system also plays a role in this respect. Here we investigated the role of cannabinoid CB1 receptor activity in amphetamine-induced monoamine release in the NAC and/or mPFC of rats using in vivo microdialysis. Results show that systemic administration of a low, clinically relevant dose of amphetamine (0.5mg/kg) robustly increased dopamine and norepinephrine release (to ~175-350% of baseline values) in the NAC shell and core subregions as well as the ventral and dorsal parts of the mPFC, while moderately enhancing extracellular serotonin levels (to ~135% of baseline value) in the NAC core only. Although systemic administration of the CB1 receptor antagonist SR141716A (0-3mg/kg) alone did not affect monoamine release, it dose-dependently abolished amphetamine-induced dopamine release specifically in the NAC shell. SR141716A did not affect amphetamine-induced norepinephrine or serotonin release in any of the brain regions investigated. Thus, the effects of acute CB1 receptor blockade on amphetamine-induced monoamine transmission were restricted to dopamine, and more specifically to mesolimbic dopamine projections into the NAC shell. This brain region- and monoamine-selective role of CB1 receptors is suggested to subserve the behavioral effects of amphetamine.  相似文献   

10.
《Journal of Physiology》2013,107(6):503-509
The role of prefrontal dopamine D1 receptors in prefrontal cortex (PFC) functions, including working memory, is widely investigated. However, human (healthy volunteers and schizophrenia patients) positron emission tomography (PET) studies about the relationship between prefrontal D1 receptors and PFC functions are somewhat inconsistent. We argued that several factors including an inverted U-shaped relationship between prefrontal D1 receptors and PFC functions might be responsible for these inconsistencies. In contrast to D1 receptors, relatively less attention has been paid to the role of D2 receptors in PFC functions. Several animal and human pharmacological studies have reported that the systemic administration of D2 receptor agonist/antagonist modulates PFC functions, although those studies do not tell us which region(s) is responsible for the effect. Furthermore, while prefrontal D1 receptors are primarily involved in working memory, other PFC functions such as set-shifting seem to be differentially modulated by dopamine. PET studies of extrastriatal D2 receptors including ours suggested that orchestration of prefrontal dopamine transmission and hippocampal dopamine transmission might be necessary for a broad range of normal PFC functions. In order to understand the complex effects of dopamine signaling on PFC functions, measuring a single index related to basic dopamine tone is not sufficient. For a better understanding of the meanings of PET indices related to neurotransmitters, comprehensive information (presynaptic, postsynaptic, and beyond receptor signaling) will be required. Still, an interdisciplinary approach combining molecular imaging techniques with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders and their innovative drug developments.  相似文献   

11.
Zhao MG  Toyoda H  Lee YS  Wu LJ  Ko SW  Zhang XH  Jia Y  Shum F  Xu H  Li BM  Kaang BK  Zhuo M 《Neuron》2005,47(6):859-872
Cortical plasticity is thought to be important for the establishment, consolidation, and retrieval of permanent memory. Hippocampal long-term potentiation (LTP), a cellular mechanism of learning and memory, requires the activation of glutamate N-methyl-D-aspartate (NMDA) receptors. In particular, it has been suggested that NR2A-containing NMDA receptors are involved in LTP induction, whereas NR2B-containing receptors are involved in LTD induction in the hippocampus. However, LTP in the prefrontal cortex is less well characterized than in the hippocampus. Here we report that the activation of the NR2B and NR2A subunits of the NMDA receptor is critical for the induction of cingulate LTP, regardless of the induction protocol. Furthermore, pharmacological or genetic blockade of the NR2B subunit in the cingulate cortex impaired the formation of early contextual fear memory. Our results demonstrate that the NR2B subunit of the NMDA receptor in the prefrontal cortex is critically involved in both LTP and contextual memory.  相似文献   

12.
Amphetamine (AMPH) releases monoamines, transiently stimulates locomotion, and inhibits feeding. Using a genetic approach, we show that mice lacking dopamine (DA-deficient, or DD, mice) are resistant to the hypophagic effects of a moderate dose of AMPH (2 microg/g) but manifest normal AMPH-induced hypophagia after restoration of DA signaling in the caudate putamen by viral gene therapy. By contrast, AMPH-induced hypophagia in response to the same dose of AMPH is not blunted in mice lacking the ability to make norepinephrine and epinephrine (Dbh(-/-)), dopamine D(2) receptors (D2r(-/-)), dopamine D(1) receptors (D1r(-/-)), serotonin 2C receptors (Htr2c(-/Y)), neuropeptide Y (Npy(-/-)), and in mice with compromised melanocortin signaling (A(y)). We suggest that, at this moderate dose of AMPH, dysregulation of striatal DA is the primary cause of AMPH-induced hypophagia and that regulated striatal dopaminergic signaling may be necessary for normal feeding behaviors.  相似文献   

13.
Preliminary evidence indicates that dopamine given by mouth facilitates the learning of motor skills and improves the recovery of movement after stroke. The mechanism of these phenomena is unknown. Here, we describe a mechanism by demonstrating in rat that dopaminergic terminals and receptors in primary motor cortex (M1) enable motor skill learning and enhance M1 synaptic plasticity. Elimination of dopaminergic terminals in M1 specifically impaired motor skill acquisition, which was restored upon DA substitution. Execution of a previously acquired skill was unaffected. Reversible blockade of M1 D1 and D2 receptors temporarily impaired skill acquisition but not execution, and reduced long-term potentiation (LTP) within M1, a form of synaptic plasticity critically involved in skill learning. These findings identify a behavioral and functional role of dopaminergic signaling in M1. DA in M1 optimizes the learning of a novel motor skill.  相似文献   

14.
Amphetamine is more effective than methamphetamine at raising dopamine levels in the prefrontal cortex. The current study tested the hypothesis that norepinephrine transporters are involved in this difference. Using microdialysis, dopamine, norepinephrine, and serotonin were measured in the rat prefrontal cortex after administration of methamphetamine or amphetamine, with and without perfusion of desipramine. Amphetamine raised norepinephrine levels more than methamphetamine did. Desipramine raised dopamine and serotonin levels but did not alter metabolite levels. Desipramine attenuated the increase in dopamine by amphetamine while increasing the dopamine released by methamphetamine. These data suggest that methamphetamine and amphetamine differ in altering prefrontal cortical dopamine levels and in interacting with norepinephrine transporters. It is proposed that amphetamine releases dopamine in the prefrontal cortex primarily through norepinephrine transporters, whereas methamphetamine interacts minimally with norepinephrine transporters.  相似文献   

15.
Wang H  Wu LJ  Kim SS  Lee FJ  Gong B  Toyoda H  Ren M  Shang YZ  Xu H  Liu F  Zhao MG  Zhuo M 《Neuron》2008,59(4):634-647
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.  相似文献   

16.
Piribedil, given either intraperitoneally or intracerebroventricularly to rats trained to eat 4 h a day, induced a dose- and time-related anorexia. In this context it was less potent than either amphetamine or fenfluramine.The anorectic effect of piribedil was selectively antagonized by blockade of dopamine (DA) receptors in the central nervous system but not either inhibition of catecholamine synthesis, blockade of α- or β-adrenoceptors or serotoninergic receptors. Also a blocker of “peripheral” DA receptors failed to antagonize piribedil-induced anorexia.Piribedil, as opposed to amphetamine, failed to increase locomotor activity or to induce stereotyped behaviour at doses lower than that required to cause an approximate 80% reduction of food intake.These findings indicate that stimulation of central DA receptors involved in feeding regulation is responsible for the anorexigenic effect of piribedil. This effect in most instances occurs at dose levels of the compound which fail to induce other central stimulant effects.  相似文献   

17.
The mammalian target of rapamycin (mTOR) complex 2 (mTORC2) is a multimeric signaling unit that phosphorylates protein kinase B/Akt following hormonal and growth factor stimulation. Defective Akt phosphorylation at the mTORC2-catalyzed Ser473 site has been linked to schizophrenia. While human imaging and animal studies implicate a fundamental role for Akt signaling in prefrontal dopaminergic networks, the molecular mechanisms linking Akt phosphorylation to specific schizophrenia-related neurotransmission abnormalities have not yet been described. Importantly, current understanding of schizophrenia suggests that cortical decreases in DA neurotransmission and content, defined here as cortical hypodopaminergia, contribute to both the cognitive deficits and the negative symptoms characteristic of this disorder. We sought to identify a mechanism linking aberrant Akt signaling to these hallmarks of schizophrenia. We used conditional gene targeting in mice to eliminate the mTORC2 regulatory protein rictor in neurons, leading to impairments in neuronal Akt Ser473 phosphorylation. Rictor-null (KO) mice exhibit prepulse inhibition (PPI) deficits, a schizophrenia-associated behavior. In addition, they show reduced prefrontal dopamine (DA) content, elevated cortical norepinephrine (NE), unaltered cortical serotonin (5-HT), and enhanced expression of the NE transporter (NET). In the cortex, NET takes up both extracellular NE and DA. Thus, we propose that amplified NET function in rictor KO mice enhances accumulation of both NE and DA within the noradrenergic neuron. This phenomenon leads to conversion of DA to NE and ultimately supports both increased NE tissue content as well as a decrease in DA. In support of this hypothesis, NET blockade in rictor KO mice reversed cortical deficits in DA content and PPI, suggesting that dysregulation of DA homeostasis is driven by alteration in NET expression, which we show is ultimately influenced by Akt phosphorylation status. These data illuminate a molecular link, Akt regulation of NET, between the recognized association of Akt signaling deficits in schizophrenia with a specific mechanism for cortical hypodopaminergia and hypofunction. Additionally, our findings identify Akt as a novel modulator of monoamine homeostasis in the cortex.  相似文献   

18.
Marowsky A  Yanagawa Y  Obata K  Vogt KE 《Neuron》2005,48(6):1025-1037
The amygdala is under inhibitory control from the cortex through the activation of local GABAergic interneurons. This inhibition is greatly diminished during heightened emotional states due to dopamine release. However, dopamine excites most amygdala interneurons, suggesting that this dopaminergic gate may be mediated by an unknown subpopulation of interneurons. We hypothesized that this gate is mediated by paracapsular intercalated cells, a subset of interneurons that are innervated by both cortical and mesolimbic dopaminergic afferents. Using transgenic mice that express GFP in GABAergic interneurons, we show that paracapsular cells form a network surrounding the basolateral complex of the amygdala. We found that they provide feedforward inhibition into the basolateral and the central amygdala. Dopamine hyperpolarized paracapsular cells through D1 receptors and substantially suppressed their excitability, resulting in a disinhibition of the basolateral and central nuclei. Suppression of the paracapsular system by dopamine provides a compelling neural mechanism for the increased affective behavior observed during stress or other hyperdopaminergic states.  相似文献   

19.

Background

Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume.

Methods

A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI.

Results

We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups.

Conclusions

The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.  相似文献   

20.
Evoked Extracellular Dopamine In Vivo in the Medial Prefrontal Cortex   总被引:5,自引:2,他引:3  
Abstract: The measurement of evoked extracellular dopamine in the medial prefrontal cortex by using fast-scan cyclic voltammetry with carbon-fiber microelectrodes was established and release characteristics of mesoprefrontal dopamine neurons were examined in vivo in anesthetized rats. Despite the sparse dopaminergic innervation and the presence of more dense noradrenergic and serotonergic innervations overall in the medial prefrontal cortex, the measurement of extracellular dopamine was achieved by selective recording in dopamine-rich terminal fields and selective activation of ascending dopamine neurons. This was confirmed by electrochemical, pharmacological, and anatomical evidence. An increased release capacity for mesoprefrontal dopamine neurons was also demonstrated by the slower decay of the evoked dopamine response after inhibition of catecholamine synthesis and the maintenance of the evoked dopamine response at higher levels in the medial prefrontal cortex compared with the striatum during supraphysiological stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号