首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein synthesis is shown to be very heat-sensitive in Chinese hamster cells. It is shut off completely following 15-20 min at 42 degrees C whereas RNA and DNA syntheses are affected only after much longer exposure times. Cells recover from inhibition of protein synthesis upon transfer to 37 degrees C. The degree of recovery is inversely related to the duration of heat exposure and it fits cell survival quantitatively. Cells which become temporarily heat-resistant by prior heat-treatment, are able to recover translational capacity even after a very long exposure to heat (4 h at 42 degrees C). Spermine, which enhances heat-induced cell killing, does not increase the response to heat of protein, RNA and DNA synthesis. Ornithine decarboxylase (ODC, EC 4.1.1.17) activity is lost exponentially following a 20 min lag period during exposure at 42 degrees C. The half-life observed (12 min) is in agreement with the reported values of half-life of decay of ODC in other systems. It is concluded that the loss of activity is due to the shut-off of translation. The activity of ODC is recovered upon transfer to 37 degrees C. The presence of spermine during heating does not affect the loss of enzyme activity but delays its recovery by about 3 h upon transfer to 37 degrees C.  相似文献   

2.
In this study we investigated the effect of heat on the proteins of the particulate fraction (PF) of HeLa S3 cells using electron spin resonance (ESR) and thermal gel analysis (TGA). ESR detects overall conformational changes in proteins, while TGA detects denaturation (aggregation due to formation of disulfide bonds) in specific proteins. For ESR measurements the -SH groups of the proteins were labelled with a maleimido bound spin label (4-maleimido-tempo). The sample was heated inside the ESR spectrometer at a rate of 1 degree C/min. ESR spectra were made every 2-3 degrees C between 20 degrees C and 70 degrees C. In the PF of untreated cells conformational changes in proteins were observed in three temperature stretches: between 38 and 44 degrees C (transition A, TA); between 47 and 53 degrees C (transition B, TB); and above 58 degrees C (transition C, TC). With TGA, using the same heating rate, we identified three proteins (55, 70, and 90 kD) which denatured during TB. No protein denaturation was observed during TA, while during TC denaturation of all remaining proteins in the PF occurred. When the ESR and TGA measurements were done with the PF of (heat-induced) thermotolerant cells, TA was unchanged while TB and TC started at higher temperatures. The temperature shift for the onset of these transitions correlated with the degree of thermotolerance that was induced in the cells. These results suggest that protection against heat-induced denaturation of proteins in the PF is involved in heat induced thermotolerance.  相似文献   

3.
The role of the free sulfhydryl group of beta-lactoglobulin in the formation of a stable non-native monomer during heat-treatment of beta-lactoglobulin solutions was investigated. Two concomitant events occurred at the earlier stage of heating: unfolding of native globular monomer and intramolecular sulfhydryl/disulfide exchange reaction. Thus, two denatured monomeric species were formed: a non-native monomer with exposed Cys-121 (Mcys121) which became reversible after cooling, and a stable non-native monomer with exposed Cys-119 (Mcys119) which exhibited both a larger hydrodynamic conformation than native monomer and low solubility at pH 4.7. The results also show that the formation of these monomeric species throughout heat-induced denaturation of native beta-lg monomers is faster than their subsequent aggregation. A mechanism describing the behavior of beta-lg denaturation/aggregation during heat-treatment under selected conditions (5.8 mg/ml, low ionic strength, pH 6.6, 85 degrees C) is presented.  相似文献   

4.
Differential scanning calorimetry (DSC) was applied to elucidate the thermal behavior of fowl feather keratins (barbs, rachis, and calamus) with different morphological features. The DSC curves exhibited a clear and relatively large endothermic peak at about 110-160 degrees C in the wet condition. A considerable decrease in transition temperature with urea and its helical structure content estimated by Fourier transform infrared spectroscopy (FT-IR), and the disappearance of one of the diffraction peaks with heating at 160 degrees C for 30 min, indicated that DSC could be used to evaluate the thermal behavior of keratin. Barbs showed a lower denaturation temperature than rachis and calamus. The pulverized samples showed a slightly higher denaturation temperature than the native samples. In the dry condition, thermal transition occurred in a markedly higher temperature region close to 170-200 degrees C. It is hence concluded that fowl feather keratins have very high thermal stability, and that the elimination of water brings about even greater thermal stability.  相似文献   

5.
Recent data indicate that cells may acquire thermotolerance via more than one route. In this study, we observed differences in thermotolerance development in HeLa S3 cells induced by prior heating (15 minutes at 44 degrees C) or pretreatment with sodium-arsenite (1 hour at 37 degrees C, 100 microM). Inhibition of overall protein and heat shock protein (HSP) synthesis (greater than 95%) by cycloheximide (25 micrograms/ml) during tolerance development nearly completely abolished thermotolerance induced by arsenite, while significant levels of heat-induced thermotolerance were still apparent. The same dependence of protein synthesis was found for resistance against sodium-arsenite toxicity. Toxic heat, but not toxic arsenite treatments caused heat damage in the cell nucleus, measured as an increase in the protein mass of nuclei isolated from treated cells (intranuclear protein aggregation). Recovery from this intranuclear protein aggregation was observed during post-heat incubations of the cells at 37 degrees C. The rate of recovery was faster in heat-induced tolerant cells than in nontolerant cells. Arsenite-induced tolerant cells did not show an enhanced rate of recovery from the heat-induced intranuclear protein aggregation. In parallel, hyperthermic inhibition of RNA synthesis was the same in tolerant and nontolerant cells, whereas post-heat recovery was enhanced in heat-induced, but not arsenite-induced thermotolerant cells. The more rapid recovery from heat damage in the nucleus (protein aggregation and RNA synthesis) in cells made tolerant by a prior heat treatment seemed related to the ability of heat (but not arsenite) to induce HSP translocations to the nucleus.  相似文献   

6.
Chinese hamster ovary cells in suspension cultures were heated for various times at 41.5, 43.5, and 45.5 degrees C, and quantitative determinations of microblebbing and macroblebbing of the cell membrane were performed for cells maintained at 4, 25, and 37 degrees C after hyperthermia. The percentage of cells with blebs following heating at 45.5 degrees C was dependent upon the duration of heating with increases from 40% for 5 min to 90% for 30 min. Cells exposed to lower temperatures exhibited less blebbing which was not quantifiable. The changes in bleb formation following 45.5 degrees C were dependent upon the posthyperthermia temperature: a slight decrease of macroblebbing at 25 degrees C, a decrease to 50% by 2 h at 37 degrees C, and a sharp decrease of macroblebbing to less than 10% by 1 h at 4 degrees C. Microblebbing increased slightly at 37 degrees C. When cells were transferred rapidly from the 4 degrees C posthyperthermia incubation to 37 degrees C, the bleb formation percentages returned rapidly to the higher levels which existed before posthyperthermia incubation at the lower temperatures. Gamma irradiation of 20 and 50 Gy produced only a small increase in microblebbing at longer periods (5 to 6 h) but no increase in macroblebbing. The survival of cells heated for 20 min at 45.5 degrees C was decreased 40% for suspension cells maintained at 4 degrees C for 2 to 3 h before incubation at 37 degrees C for colony formation compared to cells immediately incubated at 37 degrees C after heating. The survival of cells maintained at 25 degrees C after heating was not altered in comparison.  相似文献   

7.
The nuclear matrix is a thermolabile cellular structure   总被引:2,自引:0,他引:2       下载免费PDF全文
Heat shock sensitizes cells to ionizing radiation, cells heated in S phase have increased chromosomal aberrations, and both Hsp27 and Hsp70 translocate to the nucleus following heat shock, suggesting that the nucleus is a site of thermal damage. We show that the nuclear matrix is the most thermolabile nuclear component. The thermal denaturation profile of the nuclear matrix of Chinese hamster lung V79 cells, determined by differential scanning calorimetry (DSC), has at least 2 transitions at Tm = 48 degrees C and 55 degrees C with an onset temperature of approximately 40 degrees C. The heat absorbed during these transitions is 1.5 cal/g protein, which is in the range of enthalpies for protein denaturation. There is a sharp increase in 1-anilinonapthalene-8-sulfonic acid (ANS) fluorescence with Tm = 48 degrees C, indicating increased exposure of hydrophobic residues at this transition. The Tm = 48 degrees C transition has a similar Tm to those predicted for the critical targets for heat-induced clonogenic killing (Tm = 46 degrees C) and thermal radiosensitization (Tm = 47 degrees C), suggesting that denaturation of nuclear matrix proteins with Tm = 48 degrees C contribute to these forms of nuclear damage. Following heating at 43 degrees C for 2 hours, Hsc70 binds to isolated nuclear matrices and isolated nuclei, probably because of the increased exposure of hydrophobic domains. In addition, approximately 25% of exogenous citrate synthase also binds, indicating a general increase in aggregation of proteins onto the nuclear matrix. We propose that this is the mechanism for increased association of nuclear proteins with the nuclear matrix observed in nuclei Isolated from heat-shocked cells and is a form of indirect thermal damage.  相似文献   

8.
Chinese hamster ovary (CHO) cells became thermotolerant after treatment with either heat for 10 min at 45.5 degrees C or incubation in 100 microM sodium arsenite for 1 h at 37 degrees C. Thermotolerance was tested using heat treatment at 45 degrees C or 43 degrees C administered 6-12 h after the inducing agent. At 45 degrees C thermotolerance ratios at 10(-2) isosurvival levels were 4.2 and 3.8 for heat and sodium arsenite, respectively. Recovery from heat damage as measured by resumption of protein synthesis was more rapid in heat-induced thermotolerant cells than in either sodium arsenite-induced thermotolerant cells or nonthermotolerant cells. Differences in inhibition of protein synthesis between heat-induced thermotolerant cells and sodium arsenite-induced thermotolerant cells were also evident after test heating at 43 degrees C for 5 h. At this temperature heat-induced thermotolerant cells were protected immediately from inhibition of protein synthesis, whereas sodium arsenite-induced thermotolerant cells, while initially suppressed, gradually recovered within 24 h. Furthermore, adding cycloheximide during the thermotolerance development period greatly inhibited sodium arsenite-induced thermotolerance (SF less than 10(-6] but not heat-induced thermotolerance (SF = 1.7 X 10(-1] when tested with 43 degrees C for 5 h. Our results suggest that both the development of thermotolerance and the thermotolerant state for the two agents, while similar in terms of survival, differed significantly for several parameters associated with protein synthesis.  相似文献   

9.
The stress protein heme oxygenase-1 (HO-1) plays an essential role in the prevention of transplant-associated organ injury and rejection. Prior to transplantation, organs are normally subjected to variable periods of cold storage in appropriate preservation solutions. Here, we examined whether curcumin, a phenolic plant extract which strongly induces HO-1 in many cell types, could up-regulate HO-1 protein in cultured renal epithelial cells at temperatures lower than the physiological 37 degrees C. We found that stimulation of HO-1 following incubation of cells with curcumin for 6h was dramatically reduced by decreasing the temperature from 37 to 10 degrees C. Interestingly, renal cells displayed high HO-1 expression and heme oxygenase activity when exposed to a programmed change in temperature that consisted of 3h at 37 degrees C followed by 1.5h at 20 degrees C and 1.5h at 10 degrees C. Increased HO-1 levels were observed also after incubation of cells with curcumin during the programmed change in temperature under hypoxia, another feature typical of cold storage procedures. Upon challenge with an oxidant-generating system, cells pretreated with curcumin at 37 degrees C or during the programmed change in temperature exhibited increased resistance to oxidative stress-mediated injury. These findings highlight the feasibility of modulating HO-1 expression during hypothermic storage to confer tissues a better protection to counteract the damage characteristic of organ transplantation.  相似文献   

10.
We have shown that heat shock does not induce the synthesis of hsp70 in FM3A cells maintained at a low culture temperature of 33 degrees C although it does so in cells maintained at 37 degrees C [T. Hatayama et al. (1991) Biochem. Int. 24, 467-474]. In this paper, we show that FM3A cells maintained at 37 degrees C produced hsp70 mRNA during continuous heating at 42 degrees C or during postincubation at either 37 or 33 degrees C after being heated at 45 degrees C for 15 min, whereas cells maintained at 33 degrees C did not produce hsp70 mRNA during continuous heating at 37, 39, 42, or 45 degrees C, or during postincubation after being heated at any temperature. Thus the lack of hsp70 synthesis in cells maintained at 33 degrees C seemed to be due to the absence of hsp70 mRNA induction. Also, hsp70 was accumulated in cells maintained at 37 degrees C during continuous heating at 42 degrees C and during postincubation at 37 degrees C after heat shock at 45 degrees C, but not during postincubation at 33 degrees C. The cellular level of the constitutive hsp73 as well as the mRNA level were both similar in cells maintained at 33 and 37 degrees C. On the other hand, the cellular level of the constitutive hsp105 in cells maintained at 33 degrees C was only half of that in cells maintained at 37 degrees C. These hsp105 levels increased significantly in both types of cells after continuous heating at 39 degrees C. These findings indicate that the culture temperature affects not only the induction of hsp70 mRNA but also the accumulation of hsp70 and hsp105 in the cells.  相似文献   

11.
Mukaiyama A  Takano K  Haruki M  Morikawa M  Kanaya S 《Biochemistry》2004,43(43):13859-13866
Equilibrium and kinetic studies were carried out under denaturation conditions to clarify the energetic features of the high stability of a monomeric protein, ribonuclease HII, from a hyperthermophile, Thermococcus kodakaraensis (Tk-RNase HII). Guanidine hydrochloride (GdnHCl)-induced unfolding and refolding were measured with circular dichroism at 220 nm, and heat-induced denaturation was studied with differential scanning calorimetry. Both GdnHCl- and heat-induced denaturation are very reversible. It was difficult to obtain the equilibrated unfolding curve of Tk-RNase HII below 40 degrees C, because of the remarkably slow unfolding. The two-state unfolding and refolding reactions attained equilibrium at 50 degrees C after 2 weeks. The Gibbs energy change of GdnHCl-induced unfolding (DeltaG(H(2)O)) at 50 degrees C was 43.6 kJ mol(-1). The denaturation temperature in the DSC measurement shifted as a function of the scan rate; the denaturation temperature at a scan rate of 90 degrees C h(-1) was higher than at a scan rate of 5 degrees C h(-1). The unfolding and refolding kinetics of Tk-RNase HII were approximated as a first-order reaction. The ln k(u) and ln k(r) values depended linearly on the denaturant concentration between 10 and 50 degrees C. The DeltaG(H(2)O) value obtained from the rate constant in water using the two-state model at 50 degrees C, 44.5 kJ mol(-1), was coincident with that from the equilibrium study, 43.6 kJ mol(-1), suggesting the two-state folding of Tk-RNase HII. The values for the rate constant in water of the unfolding for Tk-RNase HII were much smaller than those of E. coli RNase HI and Thermus thermophilus RNase HI, which has a denaturation temperature similar to that of Tk-RNase HII. In contrast, little difference was observed in the refolding rates among these proteins. These results indicate that the stabilization mechanism of monomeric protein from a hyperthermophile, Tk-RNase HII, with reversible two-state folding is characterized by remarkably slow unfolding.  相似文献   

12.
Mouse C3H 10T1/2 cells exhibited a two- to threefold increase in the concentration of free Ca2+ during heating at 45 degrees C. The increase was maximal for a heat dose which was still in the shoulder region of the survival curve. The increase was fully reversible in heat-sterilized cells. By changing the concentration of extracellular Ca2+, it was possible to modulate the concentration of intracellular free Ca2+ in heated cells. Lowering the extracellular concentration to 0.03 mM reduced the baseline concentration of intracellular free Ca2+, and prevented it from increasing in heated cells to a level exceeding that of nonheated cells incubated in medium containing 2.0 or 5.0 mM Ca2+. Raising the concentration of extracellular Ca2+ to 15.0 mM raised the baseline, and resulted in a heat-induced increase in free Ca2+ which was twofold higher than that of cells heated in medium containing 2.0 or 5.0 mM Ca2+. An elevated concentration of intracellular free Ca2+ during and after heating did not potentiate thermal killing, nor did a reduced concentration during and after heating mitigate killing. Furthermore, the data argue against a heat-induced increase in free Ca2+ to some threshold level, which potentiates cell killing by some other parameter. In addition, cells heat-shocked in either 0.03 or 5.0 mM extracellular Ca2+, and then incubated in the same concentration for 12 h at 37 degrees C, developed quantitatively similar amounts of tolerance to a second heating. The data suggest that the concentration of intracellular free Ca2+ does not play a critical role in thermal killing or the induction and development of thermotolerance.  相似文献   

13.
Sun Y  Chen WL  Lin SJ  Jee SH  Chen YF  Lin LC  So PT  Dong CY 《Biophysical journal》2006,91(7):2620-2625
We apply the technique of second-harmonic generation (SHG) microscopy to obtain large area submicron resolution image of Type I collagen from rat tail tendon as it is heated from 40 degrees C to 70 degrees C for 0-180 min. The change in the collagen structure as reflected in its SHG image is observed at length scales from submicron to hundreds of microns. We observed that heating the tendon below the temperature of 54 degrees C does not produce any change in the averaged SHG intensity. At the heating temperature of 54 degrees C and above, we find that increasing the heating temperature and time leads to decreasing SHG intensity. As the tendon is heated above 54 degrees C, the regions where the SHG signal vanish and form a tiger-tail like pattern. In addition, a decrease in the SHG signal occurs uniformly throughout the tendon. By comparing the relative SHG intensities in small and large areas, we found that the denaturation process responsible for forming the tiger-tail like pattern occurs at a higher rate than the global denaturation process occurring throughout the tendon. We also measured the fibril spacing and found that it remains constant at 1.61 +/- 0.04 micron for all heating temperature and times. The constant fibril density shows that the global denaturation process occurs at a length scale smaller than the size of the fibril. Our results show that second-harmonic generation microscopy is effective in monitoring the thermal damage to collagen and has potential applications in biomedicine.  相似文献   

14.
Temperature induced denaturation of collagen in acidic solution   总被引:1,自引:0,他引:1  
Mu C  Li D  Lin W  Ding Y  Zhang G 《Biopolymers》2007,86(4):282-287
The denaturation of collagen solution in acetic acid has been investigated by using ultra-sensitive differential scanning calorimetry (US-DSC), circular dichroism (CD), and laser light scattering (LLS). US-DSC measurements reveal that the collagen exhibits a bimodal transition, i.e., there exists a shoulder transition before the major transition. Such a shoulder transition can recover from a cooling when the collagen is heated to a temperature below 35 degrees C. However, when the heating temperature is above 37 degrees C, both the shoulder and major transitions are irreversible. CD measurements demonstrate the content of triple helix slowly decreases with temperature at a temperature below 35 degrees C, but it drastically decreases at a higher temperature. Our experiments suggest that the shoulder transition and major transition arise from the defibrillation and denaturation of collagen, respectively. LLS measurements show the average hydrodynamic radius R(h), radius of gyration R(g)of the collagen gradually decrease before a sharp decrease at a higher temperature. Meanwhile, the ratio R(g)/R(h) gradually increases at a temperature below approximately 34 degrees C and drastically increases in the range 34-40 degrees C, further indicating the defibrillation of collagen before the denaturation.  相似文献   

15.
Fourier transform infrared spectroscopy (FTIR) and cryomicroscopy were used to define the process of cellular injury during freezing in LNCaP prostate tumor cells, at the molecular level. Cell pellets were monitored during cooling at 2 degrees C/min while the ice nucleation temperature was varied between -3 and -10 degrees C. We show that the cells tend to dehydrate precipitously after nucleation unless intracellular ice formation occurs. The predicted incidence of intracellular ice formation rapidly increases at ice nucleation temperatures below -4 degrees C and cell survival exhibits an optimum at a nucleation temperature of -6 degrees C. The ice nucleation temperature was found to have a great effect on the membrane phase behavior of the cells. The onset of the liquid crystalline to gel phase transition coincided with the ice nucleation temperature. In addition, nucleation at -3 degrees C resulted in a much more co-operative phase transition and a concomitantly lower residual conformational disorder of the membranes in the frozen state compared to samples that nucleated at -10 degrees C. These observations were explained by the effect of the nucleation temperature on the extent of cellular dehydration and intracellular ice formation. Amide-III band analysis revealed that proteins are relatively stable during freezing and that heat-induced protein denaturation coincides with an abrupt decrease in alpha-helical structures and a concomitant increase in beta-sheet structures starting at an onset temperature of approximately 48 degrees C.  相似文献   

16.
The effects of physiologically relevant increase in temperature (37-41 degrees C) on intestinal epithelial tight junction (TJ) barrier have not been previously studied. Additionally, the role of heat-shock proteins (HSPs) in the regulation of intestinal TJ barrier during heat stress remains unknown. Because heat-induced disturbance of intestinal TJ barrier could lead to endotoxemia and bacterial translocation during physiological thermal stress, the purpose of this study was to investigate the effects of modest, physiologically relevant increases in temperature (37-41 degrees C) on intestinal epithelial TJ barrier and to examine the protective role of HSPs on intestinal TJ barrier. Filter-grown Caco-2 intestinal epithelial cells were used as an in vitro intestinal epithelial model system to assess the effects of heat exposure on intestinal TJ barrier. Exposure of filter-grown Caco-2 monolayers to modest increases in temperatures (37-41 degrees C) resulted in a significant time- and temperature-dependent increases in Caco-2 TJ permeability. Exposure to modest heat (39 or 41 degrees C) resulted in rapid and sustained increases in HSP expression; and inhibition of HSP expression produced a marked increase in heat-induced increase in Caco-2 TJ permeability (P < 0.001). Heat exposure (41 degrees C) resulted in a compensatory increase in Caco-2 occludin protein expression and an increase in junctional localization. Inhibition of HSP expression prevented the compensatory upregulation of occludin protein expression and produced a marked disruption in junctional localization of occludin protein during heat stress. In conclusion, our findings demonstrate for the first time that a modest, physiologically relevant increase in temperature causes an increase in intestinal epithelial TJ permeability. Our data also show that HSPs play an important protective role in preventing the heat-induced disruption of intestinal TJ barrier and suggest that HSP mediated upregulation of occludin expression may be an important mechanism involved in the maintenance of intestinal epithelial TJ barrier function during heat stress.  相似文献   

17.
Recently, we have shown that two proteasome inhibitors, MG132 and lactacystin, induce hyperphosphorylation and trimerization of HSF1, and transactivate heat shock genes at 37 degrees C. Here, we examined the effects of these proteasome inhibitors and, in addition, a phosphatase inhibitor calyculin A (CCA) on the activation of HSF1 upon heat shock and during post-heat-shock recovery, with emphasis on HSF1 hyperphosphorylation and the ability of HSF1 to transactivate heat shock genes. When lactacystin, MG132, or CCA was present after heat shock, HSF1 remained hyperphosphorylated during post-heat-shock recovery at 37 degrees C. Failure of HSF1 to recover to its preheated dephosphorylated state correlated well with the suppression of the heat-induced hsp70 expression. In vitro, HSF1 from heat-shocked cells, when dephosphorylated, showed an increase in HSE-binding affinity. Taken together, these data suggest that phosphorylation of HSF1 plays an important role in the negative regulation of heat-shock response. Specifically, during post-heat-shock recovery phase, prolonged hyperphosphorylation of HSF1 suppresses heat-induced expression of heat shock genes.  相似文献   

18.
Thermal-induced conformational stability and changes in denaturation temperature of human fibrinogen (FBG) after different mechanical compressions were investigated by a simultaneous Fourier transform infrared microspectroscopy equipped with thermal analyzer (thermal FTIR microscopic system). The confocal Raman microspectroscopy was also applied to determine the thermal reversibility of solid FBG. FBG powder was pressed on one KBr pellet (1 KBr method) or sealed within two KBr pellets (2 KBr method) by different mechanical compressions. The result indicates that there was no marked difference in the thermal behavior for the solid FBG samples prepared by 1 KBr method in the heating process even under different mechanical compression pressures, in which the thermal-induced denaturation temperatures from native to denatured state were maintained constant at 66-67 degrees C. However, the denaturation temperature for the solid FBG samples prepared by 2 KBr method was shifted from 55 to 62 degrees C with the increase of mechanical compression pressure. A good linear correlation was also found between the denaturation temperature and mechanical compression pressure for FBG samples prepared by 2 KBr method. The solid FBG sample, whether prepared by 1 KBr or 2 KBr method, was also found to show the thermal-irreversible property.  相似文献   

19.
The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 degrees C and 45 degrees C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 degrees C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells (45 degrees C for 15 min) were incubated at 37 degrees C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 degrees C (step-down heating; SDH) a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks.  相似文献   

20.
We have recently concluded from the heat-induced denaturation studies that polyols do not affect deltaG(D) degrees (the Gibbs free energy change (deltaG(D)) at 25 degrees C) of ribonuclease-A and lysozyme at physiological pH and temperature, and their stabilizing effect increases with decrease in pH. Since the estimation of deltaG(D) degrees of proteins from heat-induced denaturation curves requires a large extrapolation, the reliability of this procedure for the estimation of deltaG(D) degrees is always questionable, and so are conclusions drawn from such studies. This led us to measure deltaG(D) degrees of ribonuclease-A and lysozyme using a more accurate method, i.e., from their isothermal (25 degrees C) guanidinium chloride (GdmCl)-induced denaturations. We show that our earlier conclusions drawn from heat-induced denaturation studies are correct. Since the extent of unfolding of heat- and GdmCl-induced denatured states of these proteins is not identical, the extent of stabilization of the proteins by polyols against heat and GdmCl denaturations may also differ. We report that in spite of the differences in the structural nature of the heat- and GdmCl-denatured states of each protein, the extent of stabilization by a polyol is same. We also report that the functional dependence of deltaG(D) of proteins in the presence of polyols on denaturant concentration is linear through the full denaturant concentration range. Furthermore, polyols do not affect the secondary and tertiary structures of the native and GdmCl-denatured states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号