首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth hormone (GH) elicits a variety of biological activities mainly mediated by the GH receptor (GHR), a transmembrane protein that, based on in vitro studies, seemed to function as a homodimer. To test this hypothesis directly, we investigated patients displaying the classic features of Laron syndrome (familial GH resistance characterized by severe dwarfism and metabolic dysfunction), except for the presence of normal binding activity of the plasma GH-binding protein, a molecule that derives from the exoplasmic-coding domain of the GHR gene. In two unrelated families, the same GHR mutation was identified, resulting in the substitution of a highly conserved aspartate residue by histidine at position 152 (D152H) of the exoplasmic domain, within the postulated interface sequence involved in homodimerization. The recombinant mutated receptor protein was correctly expressed at the plasma membrane. It displayed subnormal GH-binding activity, a finding in agreement with the X-ray crystal structure data inferring this aspartate residue outside the GH-binding domain. However, mAb-based studies suggested the critical role of aspartate 152 in the proper folding of the interface area. We show that a recombinant soluble form of the mutant receptor is unable to dimerize, the D152H substitution also preventing the formation of heterodimers of wild-type and mutant molecules. These results provide in vivo evidence that monomeric receptors are inactive and that receptor dimerization is involved in the primary signalling of the GH-associated growth-promoting and metabolic actions.  相似文献   

2.
Studies with a panel of monoclonal antibodies (MAbs) reactive towards the presumptive rabbit liver growth-hormone (GH) receptor show that the rabbit serum GH-binding proteins share seven antigenic determinants (three at the hormone-binding site and four located elsewhere) with the liver cytosolic GH-binding proteins and the putative GH 'receptors' associated with the hepatocyte membrane. The rabbit serum binding proteins have an affinity for GH similar to the membrane GH receptors [for human GH, Ka = 2.45 (+/- 0.15) X 10(9) M-1 (mean +/- S.E.M., n = 8)] and high capacity relative to membrane 'GH receptors'. Analogues of the postulated membrane 'receptor' subtypes 1 and 2 exist in the serum, but not subtype 3, which is also absent from liver cytosol. The serum and cytosolic binding proteins have identical cation-dependence properties; hGH binding is Ca2+-dependent, whereas oGH binding is Ca2+-independent. Affinity labelling of hGH-affinity-purified serum binding proteins with 125I-hGH demonstrated a major GH-binding subunit, of Mr 55,000, identical with the major component purified from membranes. In view of their high affinity and capacity, the serum binding proteins could control availability of GH to membrane receptors. It is suggested that the cytosolic binding proteins may be newly synthesized serum binding proteins. The existence of a close relationship between subsets of membrane-associated GH-binding sites, the serum GH-binding proteins and cytosolic GH-binding proteins dictates a reappraisal of earlier ligand-binding studies, which did not distinguish between binding-site subsets in the liver.  相似文献   

3.
The currently available evidence points to a possible influence of growth hormone (GH) on avian folliculogenesis, which can be mediated by both hepatic- and ovarian-derived IGF-I. Therefore, the purpose of the present study was to reveal GH-binding sites in granulosa and theca layers of preovulatory follicles and to determine the binding characteristics depending on the degree of follicular maturation and the stage of the ovulatory cycle in the hen. Hens were killed 2 h (stage I), 9 h (stage II), 16 h (stage III), and 23 h (stage IV) after oviposition, and the five largest yellow follicles (from F1 to F5) were removed. GH-binding sites in granulosa and theca layers from F1 to F5 follicles were characterized using a radioreceptor assay. Equilibrium dissociation constants (K(d)) and binding capacities (B(max)) were determined by Scatchard analysis of saturation curves, which revealed a single class of high-affinity GH-binding sites in both theca tissue and granulosa cells. In F1, F2, and F5 follicles, B(max) and K(d) for GH-binding sites in the granulosa layer changed during the ovulatory cycle, decreasing between stages I and III, to increase again at stage IV, with alterations in K(d) being less profound. No significant differences in binding capacities and affinities of GH-binding sites in the theca layer were found between various stages of the cycle. Furthermore, the concentration of GH-binding sites in the granulosa layer rose, whereas that in the theca layer fell with follicular enlargement. These findings indicate the presence of high-affinity GH-binding sites in both granulosa and theca layers of hen preovulatory follicles. Data also demonstrate that GH-binding sites in these tissues are regulated in a tissue-specific manner. Furthermore, the regulation of binding capacity of GH binding in granulosa cells by hormonal factors associated with ovulatory cycle is apparently not dependent on the state of follicular maturation.  相似文献   

4.
Using site-directed mutagenesis we mutated the extracellular domain of the ovine growth hormone receptor (oGHR) to the corresponding amino acids in the rat GHR at two different sites: site A is between Thr28 and Leu34 and represents a major immunogenic epitope, while site B is between Ser121 and Asp124 and is involved in the interaction of the human GHR with growth hormone (GH). Native and mutant receptors were bacterially expressed and refolded, and then RIA and GH-binding assays were carried out on the purified recombinant proteins. Mutations at the N-terminal site A of oGHR led to greatly reduced binding to bovine GH and, in addition, to significant loss of recognition by a polyclonal antiserum to bovine GHR which recognizes site A as a major epitope. The crystal structure of human GH bound to human GHR did not resolve this extreme N-terminal region of the receptor but our data indicate that the N-terminal loop undertakes a 180 degrees turn bringing it into close proximity to the hormone-binding domain in a fashion analogous to the prolactin receptor. A fourfold decrease in affinity for binding bovine GH was also observed after mutation of site B. However, this change from the ovine sequence to the equivalent sequence in the rat GHR at site B caused a 2.4-fold increase in the affinity of binding to rat GH. Taken together, the changes in binding affinity of the site-B mutant for rat and bovine GH demonstrate that this site is involved in conferring species specificity for binding GH.  相似文献   

5.
The insulin-producing rat islet tumor cell line, RIN-5AH, expresses somatogen binding sites and responds to GH by increased proliferation and insulin production. Affinity cross-linking shows that RIN-5AH cells contain two major GH-binding subunits of Mr 100-130K (110K), which appear to exist as disulfide-linked multimers of Mr 270-350K (300K). In addition, a minor Mr 180K GH-binding protein is identified which does not appear to be associated with other proteins by disulfide bridges. A plasma membrane-enriched fraction accounts for 86% of the RIN-cell GH-binding activity while cytosol and intracellular organelles are low in GH-binding activity. The plasma membrane-bound activity is soluble in Triton X-100 with intact hormone binding characteristics. The apparent KD in detergent solution is estimated to 18 ng/ml (8 x 10(-10) M). 125I-hGH-affinity cross-linking to intact and detergent-solubilized membranes as well as hGH-affinity purified protein reveals labeled proteins of Mr 180K and Mr 285-350K. In contrast to the cross-linked Mr 300K complexes of intact cells those of disintegrated cellular material are resistant to reduction with dithiothreitol, and it is speculated that this is due to intersubunit cross-linking of the disulfide-linked Mr 110K GH-binding subunits. The GH-binding proteins are purified approximately 100-fold by one cycle of hGH-affinity chromatography and five major proteins of Mr 180K, 94K, 86K, 64K, and 54K are identified by silver staining in the purified fraction. It is concluded that the RIN-5AH cells have multiple GH-binding proteins which may mediate signals for either proliferation and/or insulin production.  相似文献   

6.
Covalent cross-linking techniques have been used to investigate the structural characteristics of the growth-hormone (GH) receptor in a variety of rabbit liver cell membrane preparations (particulate and soluble). Two classes of GH-binding protein have been identified which differ in their Mr by gel filtration and susceptibility to precipitation with poly(ethylene glycol) (PEG). The first, a PEG-precipitable (Mr approximately 300,000) protein, contained Mr-65,000 and Mr-40,000 binding proteins linked by disulphide bonds. It was present in aqueous extracts derived from microsomal membranes but was not present in cytosol preparations. The second, a PEG-non-precipitable protein (Mr approximately 100,000) was composed of a non-disulphide-linked primary GH-binding subunit of Mr 60,000-66,000. This binding protein was present in all rabbit liver cell fractions and/or preparations. Both binding-protein classes contained intramolecular disulphide bonds. It is not clear whether the Mr-approximately 100,000 form, or perhaps higher-Mr species which have not been identified by cross-linking studies, represents the native, endogenous, form of the GH receptor present in particulate microsomal or plasma membranes. Accordingly, although these data have identified two classes of GH-binding protein, especially a primary GH-binding subunit of Mr 60,000-66,000, they indicate that, unlike studies on the insulin receptor, covalent cross-linking techniques alone are not sufficient to delineate the complete subunit structure of the native and endogenous form of the GH receptor.  相似文献   

7.
Gel filtration of female rat plasma with normal growth hormone (GH) concentrations (less than 100 ng/m1) showed that nearly all the immuno-reactivity was centred on a peak with an apparent molecular weight in the region of 82,000. In contrast, pituitary GH was almost entirely monomeric. The majority of plasma prolactin (PRL) in the same samples had a molecular weight of 23,000 (i.e. monomeric), and was similar in profile to pituitary PRL. Samples from male rats showed some GH immunoreactivity at the 82,000 molecular weight position but more than 65% coeluted with monomeric PRL. In female plasma with GH concentration between 300 and 1,000 ng/ml, immuno-reactivity resolved into peaks at the void volume, the monomeric position, and a peak at 82,000 that decreased, as a percentage of the total, with increasing GH concentration. These results indicate the possible presence of a GH binding factor, with greater activity in female than male rat plasma.  相似文献   

8.
The somatotropic and lactotropic receptors were studied in liver microsomal preparations from transgenic mice carrying the human growth hormone (hGH) or bovine growth hormone (bGH) gene fused to mouse metallothionein-I (MT) or phosphoenolpyruvate carboxykinase promoter/regulator (PEPCK). Specificity studies indicated that, similarly to normal mice, liver microsomes from the transgenic animals possess a mixed population of somatotropic and lactotropic binding sites. In transgenic animals of both sexes, the binding capacity of somatotropic receptors was significantly increased without corresponding changes in affinity. Expression of the MT-hGH hybrid gene was associated with the induction of somatotropic receptors which was approximately twice as great as that measured in animals expressing the MT-bGH hybrid gene. The binding capacity of lactotropic receptors in liver microsomes (quantitated, by the use, of labelled ovine prolactin) was increased 2–3 fold in transgenic females and approximately 10-fold in transgenic males as compared to the respective normal controls. We conclude that lifelong excess of GH up-regulates hepatic GH and prolactin receptors, and that lactogenic activity of GH is not essential for induction of prolactin receptors in the liver of transgenic mice.  相似文献   

9.
Soluble, specific binding protein(s) for growth hormone (GH) have been identified and partially characterized in high-speed cytosolic preparations from a number of rabbit tissues. The binding of 125I-labelled human GH to proteins in liver, heart, adipose tissue, skeletal muscle and kidney cytosols was dependent on time and cytosolic protein concentration. By Scatchard analysis, the binding affinities (KA: (2-7) X 10(9) M-1) were somewhat higher than those generally reported for membrane GH receptors. The binding proteins had a greater specificity for somatotrophic hormones than lactogenic hormones, although the kidney appeared to have, in addition, a lactogen-binding protein. By gel filtration, the Mr of the cytosolic GH-binding protein was approximately 100 000 in all tissues. None of the binding proteins was detectable by the poly(ethylene glycol) precipitation method used widely for soluble hormone receptors. The cytosolic GH-binding proteins also cross-reacted with a monoclonal antibody to the rabbit liver membrane GH receptor. These results indicate the ubiquitous presence of apparently naturally soluble GH-binding proteins in the cytosolic fractions of several tissues in the rabbit. Of great interest is their presence in muscle, where GH receptors or binding proteins have not previously been detected, despite muscle being recognized as a classical GH target tissue.  相似文献   

10.
The distribution of insulin-like growth factor I (IGF-I; somatomedin C) was mapped in testes of different aged rats by using immunohistochemical techniques. The antiserum used, K 624, has been demonstrated to be specific for human IGF-I, as defined by several criteria. Antibodies to the M1 subunit of ribonucleotide reductase, a key enzyme in DNA synthesis, were used to visualize meiotic and mitotic cells. Cytoplasmic IGF-I-like immunoreactivity as demonstrable during the first two postnatal weeks in spermatogenic cells, in Sertoli cells, and in Leydig cells. The IGF-I-like immunoreactivity decreased in the Sertoli and Leydig cells during the third and fourth postnatal weeks, and in adult rats, only spermatogenic cells showed IGF-I-like immunoreactivity. In mature rat testes, the spermatocytes were strongly immunoreactive. During puberty and adulthood, the spermatogonia expressed subunit M1 ribonucleotide reductase immunoreactivity, whereas no IGF-I-like immunoreactivity could be detected. No extracellular immunoreactivity was observed. We propose that IGF-I and/or IGF-I-like substances, possibly formed by primary spermatocytes, are likely to be involved in differentiation processes, but not in the initiation of cell proliferation in adult testes. The autocrine and/or paracrine action of IGF-I and/or IGF-I-like substances may thus have different action in developing testes than in adult testes. Our results do, however, not allow firm statements about whether IGF-I and related substances exert their actions on Sertoli cells or spermatogenic cells.  相似文献   

11.
 Growth hormone (GH) exerts its regulatory functions in controlling metabolism, balanced growth and differentiated cell expression by acting on specific receptors which trigger a phosphorylation cascade, resulting in the modulation of numerous signalling pathways dictating gene expression. A panel of five monoclonal antibodies was used in mapping the presence and somatic distribution of the GH receptor by immunohistochemistry in normal and neoplastic tissues and cultured cells of human, rat and rabbit origin. A wide distribution of the receptor was observed in many cell types. Not all cells expressing cytoplasmic GH receptors displayed nuclear immunoreactivity. In general, the relative proportion of positive cells and intensity of staining was higher in neoplastic cells than in normal tissue cells. Immunoreactivity showed subcellular localisation of the GH receptor in cell membranes and was predominantly cytoplasmic, but strong nuclear immunoreaction was also apparent in many instances. Intense immunoreactivity was also observed in the cellular Golgi area of established cell lines and cultured tissue-derived cells in exponential growth phase, indicating cells are capable of GH receptor synthesis. The presence of intracellular GH receptor, previously documented in normal tissues of mostly animal origin, is the result of endoplasmic reticulum and Golgi localisation. Heterogeneity of immunoreactivity was found in normal and neoplastic tissue with a variable range of positive cells. The nuclear localisation of immunoreactivity is the result of nuclear GH receptor/binding protein, identically to the cytosolic and plasma GH-binding protein, using a panel of five monoclonal antibodies against the GH receptor extracellular region. The expression of GH receptors, not only on small proliferating tumour cells such as lymphocytes, but also on well differentiated cells including keratinocytes, suggests that GH is necessary not only for differentiation of progenitor cells, but also for their subsequent clonal expansion, differentiation and maintenance. Accepted: 4 July 1997  相似文献   

12.
13.
Growth hormone (GH) binding to testis tissue and GH action on trout testicular cells were studied in vitro. Labeled salmon GH (sGH) was able to bind to a trout testis membrane preparation. Binding sites showed high affinity (Ka = 1-2 x 10(9) M-1) and low capacity (11 fmol/g fresh tissue) for 125I-sGH. Salmon GH and bovine GH, but not salmon gonadotropin, could compete with 125I-sGH for site occupancy. The binding characteristics were similar to those of trout liver GH receptors that we previously described. Salmon GH (0.1 and 1 microgram/ml) and bovine GH (10 micrograms/ml) could modulate steroidogenesis in cultured testicular cells: 17 alpha-hydroxy, 20 beta-dihydroprogesterone (17 alpha 20 beta OHP) accumulation in culture medium was stimulated by GH addition, and this effect increased with duration of culture and/or stimulation; 11-ketotestosterone accumulation tended to be inhibited in the presence of GH at the beginning of culture. These effects were dependent on GH concentration and were observed both in the absence and presence of gonadotropin. The amplitude of the sGH effect varied between experiments, probably according to the physiological state of the cells used. In vivo, GH and 17 alpha 20 beta OHP plasma levels increased at the beginning of spermiation (sperm production) and decreased at the end of spermiation. This relationship suggests that, at the end of the reproductive cycle, high GH levels are associated with the production of 17 alpha 20 beta OHP, a progestin necessary for efficient spawning in this species. We conclude that GH may play a role in testicular physiology, at least at certain stages of spermatogenesis.  相似文献   

14.
鲈鱼生长激素的分离及其生物活性鉴定   总被引:3,自引:0,他引:3  
运用葡聚糖凝胶G-100过滤和反相高儿液相色谱纯化两步法,首镒从鲈鱼脑垂体中分离出鲈鱼生长激素,通过SDS-聚丙烯凝胶电泳测得鲈鱼非还原性的和还原性的生长激素分子量分别为19.2和20.7kD;等电聚焦证实鲈鱼生长激素等电点为7.15。Western免疫印迹反应证实,鲈鱼生长激素具有与大麻哈鱼生长激素抗体发生特异性免疫交叉反应的特性,而与大麻哈鱼催乳素和生长催乳素抗体无免疫交叉反应。  相似文献   

15.
The metalloendopeptidase 24.15 (EP24.15) is ubiquitously present in the extracellular environment as a secreted protein. Outside the cell, this enzyme degrades several neuropeptides containing from 5 to 17 amino acids (e.g. gonadotropin releasing hormone, bradykinin, opioids and neurotensin). The constitutive secretion of EP24.15 from glioma C6 cells was demonstrated to be stimulated linearly by reduced concentrations of extracellular calcium. In the present report we demonstrate that extracellular calcium concentration has no effect on the total amount of the extracellular (cell associated + medium) enzyme. Indeed, immuno-cytochemical analyses by confocal and electron microscopy suggested that the absence of calcium favors the enzyme shedding from the plasma membrane into the medium. Two putative calcium-binding sites on EP24.15 (D93 and D159) were altered by site-directed mutagenesis to investigate their possible contribution to binding of the enzyme at the cell surface. These mutated recombinant proteins behave similarly to the wild-type enzyme regarding enzymatic activity, secondary structure, calcium sensitivity and immunoreactivity. However, immunocytochemical analyses by confocal microscopy consistently show a reduced ability of the D93A mutant to associate with the plasma membrane of glioma C6 cells when compared with the wild-type enzyme. These data and the model of the enzyme's structure as determined by X-ray diffraction suggest that D93 is located at the enzyme surface and is consistent with membrane association of EP24.15. Moreover, calcium was also observed to induce a major change in the EP24.15 cleavage site on distinctive fluorogenic substrates. These data suggest that calcium may be an important modulator of ep24.15 cell function.  相似文献   

16.
17.
The effect of cell density on the regulation of growth hormone (GH) receptors was studied by measuring specific binding of [125I]hGH to primary cultured hepatocytes with or without dexamethasone, which induces GH receptors. In cell cultures without dexamethasone, the cell density did not affect the level of binding of labeled GH appreciably. On the other hand, in the presence of dexamethasone, which induced an increase in the level of GH receptors on the cells, GH-binding by cultured cells at low cell density (3.3 x 10(4) cells/cm2) was about one-third of that of cells at high cell density (10(5) cells/cm2). Scatchard plot analysis showed that the cell-density dependent change in induction of GH binding, by dexamethasone was due to change in the number of binding sites without significant change in their affinity. The binding capacity of glucocorticoid receptors, measured as specific binding of [3H]dexamethasone to the hepatocytes, was not significantly affected by cell density. These results suggest that cell density modulates GH receptor induction by dexamethasone via events after glucocorticoid receptor binding.  相似文献   

18.
The effects of TRH on insulin-like growth factor I receptors were investigated on erythrocytes from 7 GH-deficient children having plasma GH levels less than 10 ng/ml during two provocation tests. Intravenous injection of synthetic TRH (0.2 mg/m2) was followed by a marked increase of IGF I binding on erythrocytes, from 3.9% +/- 0.3% to 5.9% +/- 0.3% (P less than 0.005) after 1 hour and 7.3% +/- 0.4% (P less than 0.005) after 2 hours. The IGF I binding variations were due to an increase in both the receptor affinity and the number of sites. The levels of plasma GH, IGF I, T3, T4, free T4, TSH and prolactin having been determined during the TRH test at 0, 1 hour, and 2 hours after the injection, the increase in the IGF I binding to erythrocytes at the same time correlated with the rise of thyroid hormones: triiodothyronine T3 (P less than 0.001) and thyroxine T4 (P less than 0.005) and not with the level of the other hormones. These findings suggest that thyroid hormones play a role in the regulation of insulin-like growth factor I receptors.  相似文献   

19.
The binding of 125I-labelled human growth hormone (hGH) to a purified plasma membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction with Triton X-100, was dependent on time, temperature, the cations used and the receptor concentration. Solubilization did not affect the binding properties of the receptors at low concentrations of Triton X-100. Some somatogenic hormones, such as bovine GH, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled hGH from purified plasma membranes and solubilized receptor preparations, but GHs and prolactins from various other species were rather ineffective. The results indicate that although there are binding sites for hGH in these pregnant rabbit liver membranes, few of these are specifically somatogenic or lactogenic. The binding properties of the purified plasma membranes are similar to those of a microsomal preparation studied previously, suggesting that the complex nature of the binding of hGH is not due to the heterogeneity of cellular membranes used to study binding, but is a property of the receptors associated with plasma membranes.  相似文献   

20.
We describe the use of four monoclonal antibodies (MAbs) to the rabbit liver growth hormone (GH) receptor and one raised against purified rat liver GH receptor to characterize liver receptor subtypes which differ in their hormone-binding regions. The anti-(rat liver GH receptor) MAb both inhibited and precipitated rat and rabbit GH receptors, but only one-half of 125I-oGH (ovine GH) binding to liver microsomes could be inhibited by excess antibody. Conversely, only one-half of 125I-anti-(rat GH receptor) MAb binding was inhibited by excess oGH and Scatchard plots for this MAb exhibited two components. Although only 50% of 125I-oGH binding to membranes was inhibited by this MAb, all solubilized receptor could be immunoprecipitated. We postulate two epitopes for the anti-(rat GH receptor) MAb, one located at the hormone-binding site (inhibitory site) and one elsewhere (immunoprecipitating site). A second, rabbit-specific antibody (MAb 7) inhibited 85% of hormone binding but only 30% of 125I-anti-(rat GH receptor) MAb binding to rabbit liver microsomes. A combination of this MAb with the anti-(rat GH receptor) MAb totally inhibited 125I-oGH binding. MAb 7 alone totally inhibited 125I-rat GH binding to rabbit liver microsomes, as it did with 125I-oGH binding to purified receptor. On the basis of these results and others we postulate three types of GH receptor in rabbit liver membranes and ascribe approximate extents of 125I-oGH binding to each. A cytosolic 'GH receptor' which is not poly(ethylene glycol)-precipitable is shown to share five epitopes with 'type 2' microsomal receptors. Purified plasma membrane and endoplasmic reticulum fractions derived from a rabbit liver microsomal preparation have identical antigenic characteristics with respect to the GH-binding region, indicating that the heterogeneity we describe is not related to receptor processing. Of the three types of GH receptor in the plasma membrane of the rabbit (and possibly rat) we postulate that one (type 1) corresponds to the GH receptor involved in stimulating growth and possesses all of the epitopes studied here. A second (type 2) appears to be identical with the cytosolic 'GH receptor' and lacks the epitope for the anti-(rat GH receptor) MAb in the hormone binding site region. A third (type 3) does not possess the epitope for the inhibitory anti-(rabbit GH receptor) MAb, appears not to bind rat GH and is lost during purification. The availability of type-specific MAbs will facilitate assignment of specific functions to liver receptor subtypes which mediate the multiple functions of GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号